DOI QR코드

DOI QR Code

Estimate of Wave Overtopping Rate on Armoured Slope Structures Using FUNWAVE-TVD Model

FUNWAVE-TVD 모델을 이용한 경사구조물의 월파량 산정

  • Moon Su Kwak (Department of Civil Engineering, Myongji College)
  • 곽문수 (명지전문대학교 토목공학과)
  • Received : 2024.01.10
  • Accepted : 2024.02.05
  • Published : 2024.02.29

Abstract

In this study, the program was modified by adding the empirical formula of EurOtop (2018) to enable calculation of wave overtopping on armoured slope structures in the FUNWAVE-TVD model using the fully nonlinear Boussinesq equation. The validity of the modified numerical model was verified by comparing it with CLASH data and experiment data for the rubble mound structure. This model accurately reproduced the change in wave overtopping rate according to the difference in the roughness factor of the armoured block, and well reproduced the rate of decrease in wave overtopping rate due to the increase in relative freeboard. The overtopping rate of the armoured slope structures showed significant differences depending on the positioning condition of the armoured blocks. When Tetrapods were placed with regular positioning, the overtopping rate increased significantly compared to when they were placed with random positioning, and it was consistent with when they were placed with Rocks. Meanwhile, when rocks were placed in one row, the wave overtopping rate was greater than when rocks were placed in two rows, which is believed to be due to the influence of the roughness and permeability of the structure's surface.

본 연구에서는 완전비선형 Boussinesq 방정식을 사용한 FUNWAVE-TVD 모델에 경사구조물의 월파 계산이 가능하도록 EurOtop(2018)의 경험식을 추가하여 프로그램을 수정하였다. 수정된 수치 모형은 경사제에 대한 CLASH data 및 수리모형실험 자료와 비교하여 그 타당성이 검증되었다. 본 모형은 피복 블록의 조도계수 차이에 따른 월파량의 변화를 정확히 재현하였고, 상대여유고 증가에 따른 월파량의 감소율을 잘 재현하였다. 경사제의 월파량은 피복 블록의 배치 상태에 따라서 큰 차이를 보였다. Tetrapods를 정적(regular positioning)으로 배치한 경우는 난적(random positioning)으로 배치한 경우보다 월파량이 크게 증가하였고 Rocks로 배치했을 때와 일치하였다. 한편, Rocks를 1열로 배치한 경우는 2열로 배치한 경우보다 월파량이 커졌으며 이는 구조물 표면의 조도와 투수성의 영향 때문으로 판단된다.

Keywords

References

  1. Bruce, T., Van der Meer, J.W., Franco, L. and Pearson, J.M. (2009). Overtopping performance of different armour units for rubble mound breakwaters. Coastal Engineering, 56(2), 166-179. https://doi.org/10.1016/j.coastaleng.2008.03.015
  2. Castiglione, F., Stagnitti, M., Musumeci, R.E. and Foti, E. (2023). Influence of van gent parameters on the overtopping discharge of a rubble mound breakwater. J. of Marine Science and Engineering, 11, 1600. https://doi.org/10.3390/jmse11081600.
  3. Cavallaro, L., Dentale, F., Donnarumma, G., Forti, E., Musumeci, R.E. and Carratelli, E.P. (2012). RUBBLE MOUND BREAKWATER OVERTOPPING: ESTIMATION OF THE RELIABILITY OF A 3D NUMERICAL SIMULATION, Proceedings of 33rd ICCE, ASCE.
  4. Chen, Q. (2006). Fully nonlinear boussinesq-type equations for waves and currents over porous beds. J. of Engineering Mechanics, 132(2), 220-230. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:2(220)
  5. Choi, Y.K. and Seo, S.N. (2018). Comparion of numerical solutions by TVD schemes in simulations of irregular waves propagating over a submerged shoal using FUNWAVE-TVD numerical model. J. of Korean Society of Coastal and Ocean Engineers, 30(4), 143-152 (in Korean). https://doi.org/10.9765/KSCOE.2018.30.4.143
  6. CLASH. Crest Level Assessment of coastal Structures by full scale monitoring, neural network prediction and Hazard analysis on permissible wave overtopping, Fifth Framework Programme of the EU, Contract No. EVK3-CT-2001-00058, Project Periods of 2001.01-2004.12.
  7. Erduran, K.S., Ilic, S. and Kutija, V. (2005). Hybrid finite-volume finite-diference scheme for the solution of Boussinesq equations. Int. J. of Numer. Meth. Fluids, 49, 1213-1232. https://doi.org/10.1002/fld.1021
  8. EurOtop (2016). Manual on wave overtopping of sea defences and related structures, Second Edition.
  9. EurOtop (2018). Manual on wave overtopping of sea defences and related structures, Second Edition.
  10. Gallach-Sanchez, D., Troch, P. and Kortenhaus, A. (2021). A new average wave overtopping prediction formula with improved accuracy for smooth steep low-crested structures. Coastal Engineering, 163, 103800.
  11. Ghasemi, A., Amirabadi, R., Kamalin, U.R. and Mazyak, A.R. (2021). Numerical modeling of armour type and arrangement effects on wave overtopping at rubble mound breakwater. International J. of Maritime Technology, 15, 147-155.
  12. Jung, J.-S. and Yoon, J.-S. (2019). Experimental study for overtopping discharges of sea dike having low mound and high wave wall (LMHW). J. of Korean Society of Coastal and Ocean Engineers, 31(6), 335-343 (in Korean). https://doi.org/10.9765/KSCOE.2019.31.6.335
  13. Kirby, J.T., Wei, G., Chen, Q., Kennedy, A.B. and Dalrymple, A. (1998). Fully Nonlinear Boussinesq Wave Model Documentation and User's Manual (FUNWAVE 1.0), Center for Applied Coastal Research, University of Delaware, Research Report NO. CACR-98-06.
  14. Lee, J.-I. and Jeong, J.K. (2021). Estimation for maximum individual wave overtopping of a rubble mound structure under non-breaking conditions. KSCE J. of Civil and Environmental Engineering Research, 41(6), 663-673 (in Korean).
  15. Lee, J.-I. and Kim, Y.-T. (2023). Physical model tests for mean wave overtopping discharge of rubble-mound structure covered by tetrapods: Rc/Ac = 1 and cota = 1.5 conditions. J. of Korean Society of Coastal and Ocean Engineers, 35(3), 49-56 (in Korean). https://doi.org/10.9765/KSCOE.2023.35.3.49
  16. Losada, I.J., Lara, J.L., Guanche, R. and Gonzalez-Ondina, J.M. (2008). Numerical analysis of wave overtopping of rubble mound breakwaters. Coastal Engineering, 55(1), 47-62. https://doi.org/10.1016/j.coastaleng.2007.06.003
  17. Lynett, P.J., Melby, J.A. and Kim, D.H. (2010). An application of Boussinesq modeling to Hurricane wave overtopping and inundation. Ocean Engineering, 37(1), 135-153. https://doi.org/10.1016/j.oceaneng.2009.08.021
  18. McCabe, M.V., Stansby, P.K. and Apsley, D.D. (2013). Random wave runup and overtopping a steep sea wall: Shallow-water and Boussinesq modelling with generalised breaking and wall ompact algorithms validated against laboratory and field measurements. Coastal Engineering, 74, 33-49. https://doi.org/10.1016/j.coastaleng.2012.11.010
  19. Molines, J. and Medina, J.R. (2015). Calibration of overtopping roughness factors for concrete armor units in non-breaking conditions using the CLASH database. Coastal Engineering, 96, 62-70. https://doi.org/10.1016/j.coastaleng.2014.11.008
  20. Neves, M.G., Reis, M.T., Losada, I.J. and Hu, K. (2008). Wave overtopping of povoa de varzim breakwater: Physical and numerical simulations. J. of Waterway, Port, Coastal and Ocean Engineering, 134(4), 226-236. https://doi.org/10.1061/(ASCE)0733-950X(2008)134:4(226)
  21. Oh, S.-H. (2016). Analysis of the effect of reducing wave overtopping by wave return walls. J. of Korean Society of Coastal and Ocean Engineers, 28(1), 1-6 (in Korean). https://doi.org/10.9765/KSCOE.2016.28.1.1
  22. Pu, J.H. and Shao, S. (2012). Smoothed particle hydrodynamics simulation of wave overtopping characteristics for different coastal structures. The Scientific World Journal, 2012, 163613.
  23. Salauddin, M. and Pearson, J.M. (2020). Laboratory investigation of overtopping at a sloping structure with permeable shingle foreshore. Ocean Engineering, 197, 106866.
  24. Shi, F., Kirby, J.T., Harris, J.C., Geiman, J.D. and Grilli, S.T. (2012). A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modeling, 43-44, 36-51. https://doi.org/10.1016/j.ocemod.2011.12.004
  25. Sohn, B.-K, Kim, H.-J. and An, H.-C. (2005). Experimental study of the wave overtopping/reflection rate on the shapes of rubble mound structures. J. of Ocean Engineering and Technology, 19(2), 34-39 (in Korean).
  26. Stansby, P.K. (2003). Solitary wave run up and overtopping by a semi-implicit finite-volume shallow-water Boussineq model. J. Hydraulic Research, 41(6), 639-647. https://doi.org/10.1080/00221680309506896
  27. Steendam, G.-J., van der Meer, J.W., Verhaeghe, H., Besley, P., Franco, L. and van Gent, M.R.A. (2004). The international database on wave overtopping. Proceedings of 29th International Conference on Coastal Engineering, ASCE, pp. 4301-4313.
  28. Suzuki, T., Altomare, C., Verwaest, T., Trouw, K. and Zijlema, M. (2014). Two-dimensional wave overtopping calculation over a dike in shallow foreshore by SWASH. Proceedings of 34th ICCE, ASCE.
  29. Tonelli, M. and Petti, M. (2013). Numerical simulation of wave overtopping at coastal dikes and low-crested structure by means of a shock-capturing Boussinesq model. Coastal Engineering, 79, 75-88. https://doi.org/10.1016/j.coastaleng.2013.04.007
  30. Tuan, T.Q. and Oumeraci, H. (2010). A numerical model of wave overtopping on sea dikes. Coastal Engineering, 57, 757-772. https://doi.org/10.1016/j.coastaleng.2010.04.007
  31. Vanneste, D., Altomare, C., Suzuki, T. and Verwaest, T. (2014). COMPARISON OF NUMERICAL MODELS FOR WAVE OVERTOPPING AND IMPACT ON A SEA WALL. Proceedings of 34th ICCE, ASCE.
  32. Wei, G., Kirby, J.T., Grilli, S.T. and Subramanya, R. (1995). A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. J. Fluid Mech., 294, 71-92. https://doi.org/10.1017/S0022112095002813
  33. Zhang, N., Zhang, Q., Wang, K.-H., Zou, G., Jiang, X., Yang, A. and Li, Y. (2020). Numerical simulation of wave overtopping on breakwater with an armor layer of accropode using SWASH model. Water, 12(2), 386.