• Title/Summary/Keyword: 완전비선형 Boussinesq 방정식

Search Result 6, Processing Time 0.021 seconds

Surf Zone Wave Transformations Simulated by a Fully Nonlinear Boussinesq Equation (완전비선형 Boussinesq방정식을 이용한 쇄파대의 파랑변형 모의)

  • 윤종태;김종무
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.4
    • /
    • pp.296-308
    • /
    • 2001
  • A fully nonlinear Boussinesq equation of Wei et al. is finite differenced by Adams predictor-corrector method. A spatially distributed source function and sponge layers are used to reduce the reflected waves in the domain and wale breaking mechanism is included in the equation. The generated waves are found to be good and the corresponding wale heights are very close to the target values. The shoaling of solitary wave and transformation of regular wave over submerged shelf were simulated successfully. The characteristics of breaking mechanism was identified through the numerical experiment and the results of two dimensional wave propagation test over the spherical shoal showed the importance of nonlinear wave model.

  • PDF

Numerical Simulations of Dam-Break Flows and Inundation considering Nonhydrostatic Pressure and Dispersive Effects (동수압 및 분산 효과를 고려한 댐붕괴파와 범람 수치모의)

  • Kim, Dae-Hong;Lynett, Patrick
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.213-217
    • /
    • 2010
  • 댐붕괴파 (dam-break flow)나 지진해일에 의해 발생하는 undular bore와 충격파 (shock) 현상을 동수압 및 분산효과를 고려하여 수치모의를 수행하였다. 완전비선형 Boussinesq-type equations 모형을 이용하여, 동수압 및 분산 효과를 고려하였다. 방정식은 4차 정확도의 유한체적법을 이용하여 해석하였고, 시간적으로도 4차정확도의 기법을 이용하여 고차미분항에 대한 수치분산을 억제하였다. 다양한 경우의 1차원과 2차원 공간에서의 수치모의를 수행하고 검증을 수행하였다. 그 결과, 완전비선형 Boussinesq-type equations 모형은 천수방정식 (shallow water equations) 기반의 모형에서 재현이 불가능한 undular bore 등을 재현 하는 등, 전반적으로 천수방정식 기반의 모형 보다 물리적으로도 타당하고 정량적으로도 실험결과와 잘 일치하는 경향을 보였다. 즉, 댐붕괴파나 지진해일 등에 의한 범람 모의에 있어 동수압과 분산 효과의 중요성이 공학적으로도 매우 중요한 고려사항 임이 나타났다.

  • PDF

Estimate of Wave Overtopping Rate on Armoured Slope Structures Using FUNWAVE-TVD Model (FUNWAVE-TVD 모델을 이용한 경사구조물의 월파량 산정)

  • Moon Su Kwak
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.1
    • /
    • pp.11-19
    • /
    • 2024
  • In this study, the program was modified by adding the empirical formula of EurOtop (2018) to enable calculation of wave overtopping on armoured slope structures in the FUNWAVE-TVD model using the fully nonlinear Boussinesq equation. The validity of the modified numerical model was verified by comparing it with CLASH data and experiment data for the rubble mound structure. This model accurately reproduced the change in wave overtopping rate according to the difference in the roughness factor of the armoured block, and well reproduced the rate of decrease in wave overtopping rate due to the increase in relative freeboard. The overtopping rate of the armoured slope structures showed significant differences depending on the positioning condition of the armoured blocks. When Tetrapods were placed with regular positioning, the overtopping rate increased significantly compared to when they were placed with random positioning, and it was consistent with when they were placed with Rocks. Meanwhile, when rocks were placed in one row, the wave overtopping rate was greater than when rocks were placed in two rows, which is believed to be due to the influence of the roughness and permeability of the structure's surface.

Estimate of Wave Overtopping Rate on Vertical Wall Using FUNWAVE-TVD Model (FUNWAVE-TVD 모델을 이용한 직립구조물의 월파량 산정)

  • Kwak, Moon Su;Kobayashi, Nobuhisa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.257-264
    • /
    • 2021
  • This study established a numerical model capable of calculating the wave overtopping rate of coastal structures by nonlinear irregular waves using the FUNWAVE-TVD model, a fully nonlinear Boussinesq equation model. Here, a numerical model was established by coding the mean value approach equations of EurOtop (2018) and empirical formula by Goda (2009), and adding them as subroutines of the FUNWAVE-TVD model. The verification of the model was performed by numerically calculating the wave overtopping rate of nonlinear irregular waves on vertical wall structures and comparing them with the experimental results presented in EurOtop (2018). As a result of the verification, the numerical calculation result according to the EurOtop equation of this model was very well matched with the experimental result in all relative freeboard (Rc/Hmo) range under non-impulsive wave conditions, and the numerical calculation result of empirical formula was evaluated slightly smaller than the experimental result in Rc/Hmo < 0.8 and slightly larger than the experimental result in Rc/Hmo > 0.8. The results of this model were well represented in both the exponential curve and the power curve under impulsive wave conditions. Therefore, it was confirmed that this numerical model can simulate the wave overtopping rate caused by nonlinear irregular waves in an vertical wall structure.

Depth-Integrated Models for Turbulent Flow and Transport by Long Wave and Current (흐름과 장파에 의해 발생하는 난류 및 수송모의를 위한 수심적분형 모형)

  • Kim, Dae-Hong;Lynett, Patrick
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.546-550
    • /
    • 2010
  • 흐름과 장파에 의하여 발생되는 난류의 subgrid scale mixing effects를 고려할 수 있는 수심적분형 모형(depth-integrated model)을 제시하였다. 완전비선형의 수심적분형 모형은 약분산(weakly dispersive) 환경에서 흐름의 회전성(rotational)을 고려하도록 perturbation approach를 이용하여 유도되었다. 동일한 방법을 이용하여 수심적분형 이송확산방정식(depth-integrated scalar transport equation)을 유도하였다. 방정식은 4차정확도의 유한체적기법을 이용하여 해석하였으며, 다양한 혼합양상을 보이는 흐름에 대한 수치모의를 수행하였다.

  • PDF

Investigation of Characteristics of Rip Current at Haeundae Beach based on Observation Analysis and Numerical Experiments (관측자료 분석과 수치모의에 의한 해운대 이안류 발생 특성 연구)

  • Yoon, Sung Bum;Kwon, Seok Jae;Bae, Jae Soek;Choi, Junwoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4B
    • /
    • pp.243-251
    • /
    • 2012
  • To investigate the characteristics of rip current occurring at Haeundae beach, observations obtained from a buoy and a CCTV were analyzed and numerical experiments were conducted. During observed rip-current events, the CCTV images showed that a couple of wave-trains, which are close to regular waves with slightly different directions, propagated to the beach, and wavelet analyses of data from the buoy showed very narrow-banded spectra with a peak frequency. From the evidences, it was inferred that a known mechanism of generating rip current due to the nodal line area of honeycomb-patterned wave crest was one of the significant factors of rip current occurrences of Haeundae beach. The mechanism has been explained by the following: When two wave-trains with slightly different directions propagate to a beach, wave crests of the incident wave-trains form honeycomb pattern due to nonlinear interaction. The nodal lines of honeycomb pattern are developed in the cross-shore direction. And longshore currents flow toward the nodal line area which has very low wave energy. Consequently their mass flux is expelled through the area toward the sea direction. To confirm the generation, numerical experiments were performed using a nonlinear Boussinesq equation model. In the cases with two incident wave-trains with slightly different directions and with a monochromatic wave propagating over a submerged shoal, it was seen that the honeycomb pattern of wave crests was well developed, and thus rip currents were evolved along the nodal lines.