DOI QR코드

DOI QR Code

Electrochemical Degradation of Textile Effluent Using PbO2 Electrode in Tube Electrolyzer

  • Chao Wang (Tongxiang Research Institute, Zhejiang Sci-Tech University ) ;
  • Yongqiang Li (Tongxiang Research Institute, Zhejiang Sci-Tech University ) ;
  • Junmin Wan (Tongxiang Research Institute, Zhejiang Sci-Tech University ) ;
  • Yi Hu (College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University ) ;
  • Yi Huang (Tongxiang Research Institute, Zhejiang Sci-Tech University )
  • 투고 : 2023.08.16
  • 심사 : 2023.10.16
  • 발행 : 2024.02.29

초록

A commercial PbO2 mesh cylinder electrode was utilized as the anode for the electrochemical degradation of the textile effluent after the biological treatment with the titanium cylinder as the cathode in a self-made tube electrolyzer. The electrochemical performances of the PbO2 electrode in tube electrolyzer under different initial pH, electrolyte flow rates, current densities and times of the electrochemical degradation were investigated. The experimental results illustrated that the PbO2 electrode can reduce the chemical oxygen demand (COD) of the textile effluent from 94.0 mg L-1 to 65.0 mg L-1 with the current efficiency of 88.3%, the energy consumption of 27.7 kWh kg-1 (per kilogram of degraded COD) and the carbon emissions of 18.0 kg CO2 kg-1 (per kilogram of degraded COD) under the optimal operating conditions. In addition, the COD of the textile effluent could be reduced from 94.0 mg L-1 to 22.0 mg L-1 after the fifth electrochemical degradation. Therefore, PbO2 mesh cylinder electrode in the tube cylinder was promising for the electrochemical degradation of the textile effluent.

키워드

과제정보

This study was financially supported by the Postdoctoral Foundation of Zhejiang Sci-Tech University Tongxiang Research Institute (grant number: TYY202301).

참고문헌

  1. W. U. Khan, S. Ahmed, Y. Dhoble, and S. Madhav, J. Indian Chem. Soc., 2023, 100(1), 100829. 
  2. S. Abilaji, K. Sathishkumar, J. Narenkumar, M. S. Alsalhi, S. Devanesan, P. Parthipan, B. Muthuraj, and A. Rajasekar, Chemosphere, 2023, 331, 138816. 
  3. H.-Y. Yao, H. Guo, F. Shen, T. Li, D.-Y. Show, M. Ling, Y.-G. Yan, K.-Y. Show, and D.-J. Lee, Bioresource Technol., 2023, 379, 129060. 
  4. Q. Chen, Y. Yang, M. Zhou, M. Liu, S. Yu, and C. Gao, J. Hazard. Mater., 2015, 284, 121-129.  https://doi.org/10.1016/j.jhazmat.2014.11.009
  5. A. Srivastava and S. Bandhu, Case Stud. Chem. Environ. Eng., 2022, 5, 100186. 
  6. R. Tanveer, A. Yasar, A.-S. Nizami, and A. B. Tabinda, J. Clean. Prod., 2023, 383, 135366. 
  7. Y. Ling, J. Hu, Z. Qian, L. Zhu, and X. Chen, Chem. Eng. J., 2016, 286, 571-577.  https://doi.org/10.1016/j.cej.2015.10.104
  8. S. Samuchiwal, A. Bhattacharya, and A. Malik, J. Water Process Eng., 2021, 40, 101770. 
  9. A. Sharma, Z. Syed, U. Brighu, A. B. Gupta, and C. Ram, J. Clean. Prod., 2019, 220, 23-32.  https://doi.org/10.1016/j.jclepro.2019.01.236
  10. E. Gunes and Z. B. Gonder, J. Environ. Manag., 2021, 294, 113042. 
  11. O. M. Rodriguez-Narvaez, A. R. Picos, N. Bravo-Yumi, M. Pacheco-Alvarez, C. A. Martinez-Huitle, and J. M. Peralta-Hernandez, Curr. Opin. Electrochem., 2021, 29, 100806. 
  12. S. A. Hien, C. Trellu, N. Oturan, A. Stephane Assemian, B. G. H. Briton, P. Drougui, K. Adouby, and M. A. Oturan, J. Hazard. Mater., 2022, 437, 129326. 
  13. P. B. Bhagawati and C. B. Shivayogimath, J. Environ. Health Sci. Eng., 2021, 19(1), 553-564.  https://doi.org/10.1007/s40201-021-00627-8
  14. W.-Y. Kim, D.-J. Son, C.-Y. Yun, D.-G. Kim, D. Chang, Y. Sunwoo, and K.-H. Hong, J. Electrochem. Sci. Technol., 2017, 8(2), 124-132.  https://doi.org/10.33961/JECST.2017.8.2.124
  15. M. R. Samarghandi, A. Dargahi, A. Shabanloo, H. Z. Nasab, Y. Vaziri, and A. Ansari, Arab. J. Chem., 2020, 13(8), 6847-6864.  https://doi.org/10.1016/j.arabjc.2020.06.038
  16. M. C. Okur, A. Akyol, T. Y. Nayir, S. Kara, D. Ozturk, and A. Civas, Chem. Eng. Res. Des., 2022, 183, 398-410.  https://doi.org/10.1016/j.cherd.2022.05.016
  17. X. Wang, L. Wang, D. Wu, D. Yuan, H. Ge, and X. Wu, Sci. Total Environ., 2023, 855, 158880. 
  18. Y. Ling, H. Xu, and X. Chen, Chem. Eng. Sci., 2015, 122, 630-636.  https://doi.org/10.1016/j.ces.2014.10.031
  19. Q. Wang, Z. Guan, Y. Xiong, and D. Li, J. Colloid Interface Sci., 2023, 634, 231-242. 
  20. P. H. Nakhate, K. K. Moradiya, H. G. Patil, et al., J. Energy Storage, 2022, 52, 104935. 
  21. B. Ghorbani, W. Wang, J. Li, A. K. Jouybari, and M. H. M. Saharkhiz, J. Energy Storage, 2022, 52, 104935. 
  22. C. Wang and P. Tian, J. Electrochem. Sci. Technol., 2021, 12(2), 266-271.  https://doi.org/10.33961/jecst.2020.01781
  23. Y. Liu, W. Chen, and D. Wu, Appl. Chem. Ind., 2018, (10), 2235-2241. 
  24. Q. Qicheng, S. Singh, L. Shang-Lien, L. Ya, J. Jierong, and W. Lizhang, J. Taiwan Inst. Chem. Eng., 2018, 84, 110-122.  https://doi.org/10.1016/j.jtice.2018.01.008
  25. S. B. Kacem, S. C. Elaoud, A. M. Asensio, M. Panizza, and D. Clematis, J. Electroanal. Chem., 2021, 889, 115212. 
  26. J. Wei, Y. Liu, and X. Wu, Process Saf. Environ. Prot., 2023, 178, 444-455. 
  27. K. Ramesh, B. M. Gnanamangai, and R. Mohanraj, J. Environ. Chem. Eng., 2021, 9(5), 106289. 
  28. J. Zou, X. Peng, M. Li, Y. Xiong, B. Wang, F. Dong, and B. Wang, Chemosphere, 2017, 171, 332-338. https://doi.org/10.1016/j.chemosphere.2016.12.065