DOI QR코드

DOI QR Code

중력장 해석으로 관측된 동두천 및 왕숙천 단층의 변위

Displacement of Dongducheon and Wangsukcheon Fault Observed by Gravity Field Interpretation

  • 투고 : 2023.12.21
  • 심사 : 2024.02.23
  • 발행 : 2024.02.29

초록

추가령 단층대의 지구조적인 이동을 확인하기 위해 경기 북부와 양주 및 서울 지역을 통과하는 동두천 단층과 서울 동쪽 지역에서 북동-남서 방향으로 발달한 왕숙천 단층을 따라서 중력장을 측정하였으며 두 지역에서 약 1,100여 점의 중력 자료를 획득하였다. 두 단층대의 중력장 해석 결과는 다음과 같다. (1) 동두천 단층이 우향으로 약 3,000 m 정도 이동하였으며 이는 지질도에서 관찰되는 동두천 단층 일원 암석의 우향 이동 규모(2,900-3,100 m)와 일치한다. (2) 왕숙천 단층의 우향 변위는 약 3,200 m 이다. (3) 이를 종합하면, 추가령 단층대의 우향 변위는 평균 약 3,000 m 정도로 판단된다. 추가령 단층대의 변위를 좀 더 정확히 확인하기 위해서, 포천 단층, 경강 단층 및 인제 단층의 변위 정도를 파악하기 위한 중력 측정과 해석이 추가로 필요하다.

To estimate the tectonic displacement of the Chugaryeong Fault System (CFS), gravity surveys were conducted along the Dongducheon fault (DF) and the Wangsukcheon fault (WF). A total of 1,100 stations for the DF and WF regions have been added to the current gravity database. The results of the gravity interpretation indicate that (1) the dextral displacement of the DF is about 3,000 m, similar to the tectonic displacement (2,900-3,100 m) shown in the geological map. (2) The dextral displacement of the WF is about 3,200 m. (3) Taken together, the tectonic displacement of the CFS is estimated to be about 3,000 m on average. To investigate more accurate tectonic displacement of the CFS, further gravity surveys is planned for the Pocheon fault, Gyeonggang fault, and Inje fault.

키워드

과제정보

이 연구는 기상청 주관 연구사업(KMI2022-00710)의 지원으로 수행되었습니다.

참고문헌

  1. Bae, H-K. and Lee, H-K. (2016) Quaternary activity patterns of the Wangsukcheon Fault in the Pocheon-Namyangju area, Korea. J. Geo. Soc. Korea, v.52(2), p.129-147. doi:10.14770/jgsk.2016.52.2.129.
  2. Choi, S., Choi, E.K., Kim, S.W. and Lee, Y.C. (2021) Expected Segmentation of the Chugaryung Fault System Estimated by the Gravity Field Interpretation. Econ. Environ. Geol., v.54(6), p.743-752. doi:10.9719/EEG.2021.54.6.743.
  3. Choi, S., Kim, S.-W., Choi, E.-K., Shin, Y. and Hong, T.-K. (2022) Analysis of the Causes of Clustered Scismicity Registered in Yeoncheon, the Middle Part of the Korean Peninsula through Gravity Field Interpretation and Modeling. Econ. Environ. Geol., v.55(6), p.633-648. doi:10.9719/EEG.2022.55.6.633.
  4. Choi, S., Kim, S-W., Yoon, J. and Choi, E-K. (2023) Tectonic Evolution of the Yangsan Fault, SE-Korea, by Gravity Field Interpretation, Geophys. J. Int., v.235, p.287-295. doi: 10.1093/gji/ggad206
  5. Choi, S.J., Chwae, U., Lee, H.-K., Song, Y. and Kang, I.- M. (2012) Review on Chugaryeong Fault. Econ. Environ. Geol., v.45, p.441-446 (in Korean with English abstract). doi:10.9719/EEG.2012.45.4.441
  6. Chung, D., Song, Y., Park, C., Kang, I-M., Choi, S-J. and Khulganakhuu, C. (2014) Reactivated Timings of Some Major Faults in the Chugaryeong Fault Zone since the Cretaceous Period, Econ. Environ. Geol., v.47(1), p.29-38. doi:10.9719/EEG.2014.47.1.29
  7. Chwae, U., Choi, S-J., Park, K.W. and Kim, G.B. (1996) Geological report of the Cheolwon -Majeonri sheet scale 1:50,000, Korea Institute of Geology, Mining and Materials (KIGAM), pp.83.
  8. Kee, W.S., Cho, D.L., Kim, B.C. and Jin, K (2005) Geological report of the Pocheon sheet (1:50,000). KIGAM, 66p. (in Korean with English summary).
  9. Kee, W.S., Lim, S.B., Kim, H., Kim, B.C., Hwang, S.K., Song, K.Y. and Kihm, Y.H. (2008) Geological report of the Yeoncheon sheet (1:50,000). KIGAM, 83p. (in Korean with English summary).
  10. Kho, H.J. and Song, K-Y. (2005) Geological report of the Uijeongbu sheet (1:50,000). KIGAM, 37p. (in Korean with English summary). https://doi.org/10.22747/data.20231113.5242.
  11. Kim, O.J. (1973) The stratigraphy and geologic structure of the metamorphic complex in the northwestern area of the Kyonggi Massif. The Journal of the Korean Institute of Mining Geology, v.6(4), p.201-218.
  12. Kil, D., Hong, T-K., Chung, D., Kim, B., Lee, J. and Park, S. (2021) Ambient Noise Tomography of Upper Crustal Structures and Quaternary Faults in the Seoul Metropolitan Area and Its Geological Implications, Earth & Space Science, v.8, e2021EA001983. https://doi.org/10.1029/2021EA001983
  13. KIGAM (2014) Regional Geophysical Anomaly Mapping, GP2013- 010-2014(2). (in Korean with English abstract)
  14. Lee, J., Hong, T.-K., Park, S., Lee, J., Chung, D. and Kim, B. (2022) Laterally Varying Crustal and Quaternary Fault-Zone Structures in the Seoul Metropolitan Area, South Korea, from a Joint Inversion Analysis Based on Dense Seismic Arrays, Bull. Seismol. Soc. doi: 10.1785/0120210197
  15. Malehmir, A., Hong, T-K., Lee, J., Zappala, S., Brodic, B., Chung, D., Kim, B., Park, S., Lee, J. and Kil, D. (2022) Fault intersections control short period intraplate start-stop seismicity in the Korean Peninsula, Tectonophysics, v.83. https://doi.org/10.1016/j.tecto.2022.229387.
  16. Nagy, D. (1966) The gravitational attraction of a right rectangular prism. Geophysics, v.31(2), p.362-371. doi:10.1190/1.1439779
  17. Park, J., Kim, H.C., Lee, Y., Shim, B.O. and Song, M.Y. (2009). Thermal properties of rocks in the republic of Korea. Econ. Environ. Geol., v.42, p.591-598. (In Korean with English abstract).
  18. Roberts, A. (2001). Curvature attributes and their application to 3D interpreted horizons. First Break, v.19, p.85-99. doi:10.1046/j.0263-5046.2001.00142.x
  19. Shin, Y. (2006) Gravity anomaly and the distribution of granitoids in the southern part of the Korean Peninsula. J. Geo. Soc. Korea, v.42(3), p.383-396.
  20. Tamura, Y. (1982) A computer program for calculating the tide generating force. The publications of the international latitude observatory of Mizusawa, v.16, p.1-19.
  21. Yoon, H-S. (1997) Petrological characteristics on stone resources of granites in the Pocheon-Euijeongbu area. Jour. Petrol. Soc. Korea, v.6(1), p.34-44.