과제정보
이 논문은 2021학년도 경북대학교 신임교수정착연구비에 의하여 연구되었음. 본 연구에 사용된 자료는 한국지질자원연구원으로부터 제공받았음.
참고문헌
- Alali, A., Kazei, V., Altaf, B., Zhang, X. and Alkhalifah, T. (2020) Time-lapse Cross-equalization by deep learning. European Association of Geoscientists & Engineers, v.2020, n.1, p.1-5. https://doi.org/10.3997/2214-4609.202011720.
- Al-Dossary, S. (2015) Preconditioning seismic data for channel detection. Interpretation, 3(1), T. 1-4, https://doi.org/10.1190/INT2014-0031.1.
- Ashraf, U., Zhu, P., Yasin, Q., Anees, A., Imraz, M., Mangi, H.N. and Shakeel, S. (2019) Classification of reservoir facies using well log and 3D seismic attributes for prospect evaluation and field development: A case study of Sawan gas field, Pakistan. Journal of Petroleum Science and Engineering, v.175, p.338-351. https://doi.org/10.1016/j.petrol.2018.12.060.
- Bacon, M., Simm, R. and Redshaw, T. (2007) 3-D seismic interpretation. Cambridge University Press, New York, 234p.
- Barnes, A. E. (2016) Handbook of poststack seismic attributes. Society of Exploration Geophysicists, v.21, 254p. https://doi.org/10.1190/1.9781560803324.
- Brouwer, F. and Huck, A. (2011) An integrated workflow to optimize discontinuity attributes for the imaging of faults. Proceedings: Attributes: New Views on Seismic Imaging-Their Use in Exploration and Production, GCSSEPM, 31st Annual Conference (2011), p.496-533. doi.org/10.5724/gcs.11.31.0496.
- Brownrigg, D.R. (1984) The weighted median filter. Communications of the ACM, v.27(8), p.807-818. doi.org/10.1145/358198.358222.
- Canales, L.L. (1984) Random noise reduction. In: SEG Technical Program Expanded Abstracts 1984. Society of Exploration Geophysicists, p.525-527. doi.org/10.1190/1.1894168.
- Candes, E., Demanet, L., Donoho, D. and Ying, X. (2006) Fast discrete curvelet transforms. Multiscale Modeling & Simulation, v.5, p.861-899. doi.org/10.1137/05064182X
- Chadwick, A., Williams, G., Delepine, N., Clochard, V., Labat, K., Sturton, S., Buddensiek, M., Dillen, M., Nickel, M., Lima, A.L., Arts, R., Neele, F. and Rossi, G. (2010) Quantitative analysis of time-lapse seismic monitoring data at the Sleipner CO 2 storage operation. The Leading Edge., v.29(2), p.170-177. doi.org/10.1190/1.3304820.
- Chopra, S. and Marfurt, K. (2006) Seismic Attributes-a promising aid for geologic prediction. CSEG Recorder, v.31(5), p.110-120.
- Chopra, S. and Marfurt, K.J. (2005) Seismic attributes-A historical perspective. Geophysics, v.70(5), 3SO-28SO, https://doi.org/10.1190/1.2098670.
- Chopra, S. and Marfurt, K.J. (2013) Preconditioning seismic data with 5D interpolation for computing geometric attributes. The Leading Edge, v.32(12), p.1456-1460. doi.org/10.1190/tle32121456.1.
- Chopra, S. and Marfurt, K. J. (2007) Seismic attributes for prospect identification and reservoir characterization. Society of Exploration Geophysicists and European Association of Geoscientists and Engineers, 481p, https://doi.org/10.1190/1.9781560801900.fm.
- Chopra, S. and Marfurt, K.J. (2008) Emerging and future trends in seismic attributes. The Leading Edge, v.27(3), p.298-318. doi.org/10.1190/1.2896620.
- Chopra, S., Misra, S. and Marfurt, K.J. (2011) Coherence and curvature attributes on preconditioned seismic data. The Leading Edge, v.30(4), p.386-393. doi.org/10.1190/1.3575281.
- Connolly, D. and Garcia, R. (2012) GEOLOGY & GEOPHYSICSTracking hydrocarbon seepage in Argentina's Neuquen basin. World Oil, p.115.
- Dixit, A. and Mandal, A. (2020) Detection of gas chimney and its linkage with deep-seated reservoir in Poseidon, NW shelf, Australia from 3D seismic data using multi-attribute analysis and artificial neural network approach. Journal of Natural Gas Science and Engineering, v.83, 03586, doi.org/10.1016/j.jngse.2020.103586.
- Dondurur, D. (2018) Acquisition and processing of marine seismic data. Elsevier, Amsterdam, 606p.
- Fred, A. and Shivaji, N.D. (2013) Fundamentals of Petroleum Geophysics. Developments in Petroleum Science, v.60, p.37-92. doi: 10.1016/B978-0-444-50662-7.00003-2.
- Glorstad-Clark, E., Faleide, J.I., Lundschien, B.A. and Nystuen, J.P. (2010) Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area. Marine and Petroleum Geology, v.27(7), p.1448-1475. https://doi.org/10.1016/j.marpetgeo.2010.02.008.
- Hale, D. (2009) Structure-oriented smoothing and semblance. CWP report 635(635), p.261-270.
- Hale, D. (2011) Structure-oriented bilateral filtering of seismic images. In: SEG International Exposition and Annual Meeting, p.3596-3600. doi:10.1190/1.3627947.
- Hart, B.S. (2008). Channel detection in 3-D seismic data using sweetness. AAPG Bulletin, v.92(6), p.733-742. doi.org/10.1306/02050807127.
- He, K., Zhang, X., Ren, S. and Sun, J. (2016) Identity mappings in deep residual networks. In Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV 14, pp.630-645. doi.org/10.1007/978-3-319-46493-0_38.
- Herron, D.A. (2011) First steps in seismic interpretation. Society of Exploration Geophysicists, v.16, 203p. https://doi.org/10.1190/1.9781560802938.
- Holbrook, W.S., Fer, I., Schmitt, R.W., Lizarralde, D., Klymak, J.M., Helfrich, L.C. and Kubichek, R. (2013) Estimating oceanic turbulence dissipation from seismic images. Journal of Atmospheric and Oceanic Technology, v.30(8), p.1767-1788. https://doi.org/10.1175/JTECH-D-12-00140.1.
- Horozal, S., Chae, S., Kim, D.H., Seo, J.M., Lee, S.M., Han, H.S., Cukur, D. and Kong, G.S. (2021) Seismic evidence of shallow gas in sediments on the southeastern continental shelf of Korea, East Sea (Japan Sea). Marine and Petroleum Geology, v.133, 105291. doi.org/10.1016/j.marpetgeo.2021.105291.
- Imran, Q.S., Siddiqui, N.A., Latiff, A.H.A., Bashir, Y., Khan, M., Qureshi, K., Al-Masgari, A.A-S., Ahmed, N. and Jamil, M. (2021) Automated Fault Detection and Extraction under Gas Chimneys Using Hybrid Discontinuity Attributes. Applied Sciences, v.11(16), p.7218. doi.org/10.3390/app11167218.
- Ismail, A., Ewida, H.F., Al-Ibiary, M.G., Gammaldi, S. and Zollo, A. (2020) Identification of gas zones and chimneys using seismic attributes analysis at the Scarab field, offshore, Nile Delta, Egypt. Petroleum Research, v.5(1), p.59-69. https://doi.org/10.1016/j.ptlrs.2019.09.002.
- Ismail, A., Ewida, H.F., Nazeri, S., Al-Ibiary, M.G. and Zollo, A. (2022) Gas channels and chimneys prediction using artificial neural networks and multi-seismic attributes, offshore West Nile Delta, Egypt. Journal of Petroleum Science and Engineering, v.208, 109349. https://doi.org/10.1016/j.petrol.2021.109349.
- Jaglan, H., Qayyum, F. and Helene, H. (2015) Unconventional seismic attributes for fracture characterization. First Break, v.33(3), p.101-109. doi.org/10.3997/1365-2397.33.3.79520.
- Jesus, C., Azul, M.O., Lupinacci, W.M. and Machado, L. (2019) Multiattribute framework analysis for the identification of carbonate mounds in the Brazilian presalt zone. Interpretation, v.7(2), p.467-476. doi.org/10.1190/INT-2018-0004.1.
- Judd, A.G. and Hovland, M. (1992) The evidence of shallow gas in marine sediments. Continental Shelf Research, v.12(10), p.1081-1095. doi.org/10.1016/0278-4343(92)90070-Z.
- Jun, H. and Cho, Y. (2022) Repeatability enhancement of time-lapse seismic data via a convolutional autoencoder. Geophysical Journal International, v.228(2), p.1150-1170. https://doi.org/10.1093/gji/ggab397.
- Jun, H., Jou, H.T., Kim, C.H., Lee, S.H. and Kim, H.J. (2020) Random noise attenuation of sparker seismic oceanography data with machine learning. Ocean Science, v.16(6), p.1367-1383. https://doi.org/10.5194/os-16-1367-2020.
- Khasraji-Nejad, H., Roshandel Kahoo, A., Soleimani Monfared, M., Radad, M. and Khayer, K. (2021) Proposing a new strategy in multi-seismic attribute combination for identification of buried channel. Marine Geophysical Research, 42(4), 35. doi.org/10.1007/s11001-021-09458-6.
- Kim, S. and Jun, H. (2022) The Use of Unsupervised Machine Learning for the Attenuation of Seismic Noise. Geophysics and Geophysical Exploration, v.25(2), p.71-84. doi: 10.7582/GGE.2022.25.2.071
- Kim, Y.J., Cheong, S., Chun, J.H., Cukur, D., Kim, S.P., Kim, J.K. and Kim, B.Y. (2020) Identification of shallow gas by seismic data and AVO processing: Example from the southwestern continental shelf of the Ulleung Basin, East Sea, Korea. Marine and Petroleum Geology, 117, 104346, doi.org/10.1016/j.marpetgeo.2020.104346.
- Kluesner, J.W. and Brothers, D.S. (2016) Seismic attribute detection of faults and fluid pathways within an active strike-slip shear zone: New insights from high-resolution 3D P-CableTM seismic data along the Hosgri Fault, offshore California. Interpretation, v.4(1), SB. p.131-148. doi.org/10.1190/INT-2015-0143.1.
- Kumar, P.C. and Sain, K. (2018) Attribute amalgamation-aiding interpretation of faults from seismic data: An example from Waitara 3D prospect in Taranaki basin off New Zealand. Journal of Applied Geophysics, v.159, p.52-68. https://doi.org/10.1016/j.jappgeo.2018.07.023.
- Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M. and Aila, T. (2018) Noise2Noise: Learning image restoration without clean data. In Proceedings of the 35th international conference on machine learning (icml), v.80, p.2965-2974. doi.org/10.48550/arXiv.1803.04189.
- Li, H., Yang, W. and Yong, X. (2018) Deep learning for ground-roll noise attenuation. In SEG Technical Program Expanded Abstracts 2018, p.1981-1985. https://doi.org/10.1190/segam2018-2981295.1.
- Liu, B., Yue, J., Zuo, Z., Xu, X., Fu, C., Yang, S. and Jiang, P. (2021) Unsupervised deep learning for random noise attenuation of seismic data. IEEE Geoscience and Remote Sensing Letters, v.19, p.1-5. doi: 10.1109/LGRS.2021.3057631.
- Liu, D., Wang, W., Chen, W., Wang, X., Zhou, Y. and Shi, Z. (2018) Random noise suppression in seismic data: What can deep learning do? In SEG International Exposition and Annual Meeting (pp. SEG-2018). https://doi.org/10.1190/segam2018-2998114.1.
- Liu, D., Wang, W., Wang, X., Wang, C., Pei, J. and Chen, W. (2019) Poststack seismic data denoising based on 3-D convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, v.58(3), p.1598-1629. https://doi.org/10.1109/TGRS.2019.2947149.
- Liu, G., Chen, X., Du, J. and Wu, K. (2012) Random noise attenuation using f-x regularized nonstationary autoregression. Geophysics, v.77(2), p.V61-V69. doi.org/10.1190/geo2011-0117.1
- Mohebian, R., Riahi, M.A. and Yousefi, O. (2018) Detection of channel by seismic texture analysis using Grey Level Cooccurrence Matrix based attributes. Journal of Geophysics and Engineering, v.15(5), p.1953-1962. https://doi.org/10.1088/1742-2140/aac099.
- Nam, H., Lim, B., Kweon, I. and Kim, J. (2020) Removal of Seabed Multiples in Seismic Reflection Data using Machine Learning, Geophysics and Geophysical Exploration, v.23(3), p.168-177. https://doi.org/10.7582/GGE.2020.23.3.00168.
- Okay, S. and Aydemir, S. (2016) Control of active faults and sea level changes on the distribution of shallow gas accumulations and gas-related seismic structures along the central branch of the North Anatolian Fault, southern Marmara shelf, Turkey. Geodinamica Acta, v.28(4), p.328-346. doi.org/10.1080/09853111.2016.1183445.
- Qi, J., Lyu, B., AlAli, A., Machado, G., Hu, Y. and Marfurt, K. (2019) Image processing of seismic attributes for automatic fault extraction. Geophysics, v.84(1), O. 25-37. doi.org/10.1190/geo2018-0369.1.
- Raef, A.E., Mattern, F., Philip, C. and Totten, M.W. (2015) 3D seismic attributes and well-log facies analysis for prospect identification and evaluation: Interpreted palaeoshoreline implications, Weirman Field, Kansas, USA. Journal of Petroleum science and Engineering, v.133, p.40-51. doi.org/10.1016/j.petrol.2015.04.028.
- Ramu, R. and Sain, K. (2021) Multi-attribute and artificial neural network analysis of seismic inferred chimney-like features in marine sediments: a study from KG Basin, India. Journal of the Geological Society of India, v.97, p.238-242. https://doi.org/10.1007/s12594-021-1672-8.
- Rutherford, S.R. and Williams, R.H. (1989) Amplitude-versus-offset variations in gas sands. Geophysics, v.54(6), p.680-688. https://doi.org/10.1190/1.1442696.
- Saad, O.M. and Chen, Y. (2020) Deep denoising autoencoder for seismic random noise attenuation. Geophysics, 85(4), V. 367-V376. https://doi.org/10.1190/geo2019-0468.1
- Sanda, O., Mabrouk, D., Tabod, T.C., Marcel, J., Essi, J.M.A. and Ngos III, S. (2020) The integrated approach to seismic attributes of lithological characterization of reservoirs: case of the F3 Block, North Sea-Dutch Sector. Open Journal of Earthquake Research, v.9(3), p.273-288. https://doi.org/10.4236/ojer.2020.93016.
- Satyavani, N., Sain, K., Lall, M. and Kumar, B.J.P. (2008) Seismic attribute study for gas hydrates in the Andaman Offshore India. Marine Geophysical Researches, v.29, p.167-175. doi.org/10.1007/s11001-008-9053-x.
- Schroot, B.M., Klaver, G.T. and Schuttenhelm, R.T. (2005) Surface and subsurface expressions of gas seepage to the seabed-examples from the Southern North Sea. Marine and Petroleum Geology, v.22(4), p.499-515. doi.org/10.1016/j.marpetgeo.2004.08.007.
- Shin, J., Kim, H., Kim, W., Kang, D., Kim, C., Park, C. and Jeong, J. (2020) Seismic imaging offshore Pohang using small-boat ultra-high-resolution 3D seismic survey. JOURNAL OF SEISMIC EXPLORATION, v.29, p.125-138.
- Shin, S.R., Kim, C.S. and Jo, C.H. (2008) A study on the shallow marine site survey using seismic reflection and refraction method. Geophysics and Geophysical Exploration, v.11(2), p.109-115.
- Si, X. and Yuan, Y. (2018) Random noise attenuation based on residual learning of deep convolutional neural network. In SEG International Exposition and Annual Meeting (pp. SEG-2018). https://doi.org/10.1190/segam2018-2985176.1.
- Singh, D., Kumar, P.C. and Sain, K. (2016) Interpretation of gas chimney from seismic data using artificial neural network: A study from Maari 3D prospect in the Taranaki basin, New Zealand. Journal of Natural Gas Science and Engineering, v.36, p.339-357. https://doi.org/10.1016/j.jngse.2016.10.039.
- Tingdahl, K.M. and de Groot, P.F. (2003) Post-stack dip-and azimuth processing. Journal of Seismic Exploration, v.12(2), p.113-126.
- Weickert, J. (1998) Anisotropic diffusion in image processing, Teubner Verlag.
- Yang, H., Kim, J. and Choe, J. (2017) Field development optimization in mature oil reservoirs using a hybrid algorithm. Journal of Petroleum Science and Engineering, v.156, p.41-50. doi.org/10.1016/j.petrol.2017.05.009.
- Yang, L., Wang, S., Chen, X., Saad, O.M., Chen, W., Oboue, Y.A.S.I. and Chen, Y. (2021) Unsupervised 3-D random noise attenuation using deep skip autoencoder, IEEE Transactions on Geoscience and Remote Sensing, v.60, p.1-16. https://doi.org/10.1109/tgrs.2021.3100455.
- Yilmaz, O. (2001) Seismic Data Analysis. Processing, Inversion, and Interpretation of Seismic Data. Society of Exploration Geophysicists, 2065p. doi: 10.1190/1.9781560801580.fm.
- Zhang, K., Zuo, W., Chen, Y., Meng, D. and Zhang, L. (2017) Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising, In IEEE Transactions on Image Processing, v.26, n.7, p.3142-3155. doi: 10.1109/TIP.2017.2662206.
- Zheng, Y., Yuan, Y. and Si, X. (2020) The improved DnCNN for linear noise attenuation. In SEG 2019 Workshop: Mathematical Geophysics: Traditional vs Learning, Beijing, China, 5-7 November 2019, p.56-59. https://doi.org/10.1190/iwmg2019_14.1.
- Zheng, Z.H., Kavousi, P. and Di, H.B. (2014) Multi-attributes and neural network-based fault detection in 3D seismic interpretation. Advanced Materials Research, v.838, p.1497-1502. doi.org/10.4028/www.scientific.net/AMR.838-841.1497.