DOI QR코드

DOI QR Code

탄성파 속성 분석을 위한 탄성파 자료 무작위 잡음 제거 연구

Study on the Seismic Random Noise Attenuation for the Seismic Attribute Analysis

  • 원종필 (경북대학교 지질학과) ;
  • 신정균 (한국지질자원연구원 포항지질자원실증연구센터) ;
  • 하지호 (한국지질자원연구원 포항지질자원실증연구센터) ;
  • 전형구 (경북대학교 지질학과)
  • Jongpil Won (Department of Geology, Kyungpook National University) ;
  • Jungkyun Shin (Pohang Branch, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Jiho Ha (Pohang Branch, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Hyunggu Jun (Department of Geology, Kyungpook National University)
  • 투고 : 2023.09.15
  • 심사 : 2023.10.24
  • 발행 : 2024.02.29

초록

탄성파 탐사는 지하자원 개발, 지반 조사, 지층 모니터링 등에 널리 사용되고 있는 지구물리탐사 방법으로 정확한 지층 구조 영상을 제공해주기 때문에 지층의 지질학적 특성 해석에 필수적으로 활용된다. 일반적으로는 탄성파 구조 보정 영상을 시각적으로 분석하여 지질학적 특성을 해석하지만 최근에는 탄성파 구조 보정 자료에 대한 정량적인 분석을 통해 원하는 지질학적 특성을 정확하게 추출하고 해석하는 탄성파 속성 분석이 널리 연구되고 있다. 탄성파 속성 분석은 탄성파 자료에 기반한 지질학적 해석에 정량적인 근거를 제시해줄 수 있기 때문에 석유 및 가스 저류층 분석, 단층 및 균열대 조사, 지층 가스 분포 파악 등의 다양한 분야에서 활용되고 있다. 하지만 탄성파 속성 분석은 탄성파 자료 내 잡음에 취약하므로 속성 분석의 정확도 향상을 위해서는 중합 후 탄성파 자료에 대한 추가적인 잡음 제거가 수반되어야 한다. 본 연구에서는 중합 후 탄성파 자료에 대한 무작위 잡음 제거 및 및 탄성파 속성 분석 정확도 개선을 위해 4가지의 잡음 제거 방법을 적용하고 비교한다. FX 디콘볼루션, DSMF, Noise2Noiose, DnCNN을 각각 포항 영일만 고해상 탄성파 자료에 적용하여 탄성파 무작위 잡음을 제거하고 잡음이 제거된 탄성파 자료로부터 에너지, 스위트니스, 유사도 속성을 계산한다. 그리고 각 잡음 제거 방법의 특성, 잡음 제거 결과, 탄성파 속성 분석 결과를 정성적 및 정량적으로 분석한 후, 이를 기반으로 탄성파 속성 분석 결과 향상을 위한 최적의 잡음 제거 방법을 제안한다.

Seismic exploration is one of the widely used geophysical exploration methods with various applications such as resource development, geotechnical investigation, and subsurface monitoring. It is essential for interpreting the geological characteristics of subsurface by providing accurate images of stratum structures. Typically, geological features are interpreted by visually analyzing seismic sections. However, recently, quantitative analysis of seismic data has been extensively researched to accurately extract and interpret target geological features. Seismic attribute analysis can provide quantitative information for geological interpretation based on seismic data. Therefore, it is widely used in various fields, including the analysis of oil and gas reservoirs, investigation of fault and fracture, and assessment of shallow gas distributions. However, seismic attribute analysis is sensitive to noise within the seismic data, thus additional noise attenuation is required to enhance the accuracy of the seismic attribute analysis. In this study, four kinds of seismic noise attenuation methods are applied and compared to mitigate random noise of poststack seismic data and enhance the attribute analysis results. FX deconvolution, DSMF, Noise2Noise, and DnCNN are applied to the Youngil Bay high-resolution seismic data to remove seismic random noise. Energy, sweetness, and similarity attributes are calculated from noise-removed seismic data. Subsequently, the characteristics of each noise attenuation method, noise removal results, and seismic attribute analysis results are qualitatively and quantitatively analyzed. Based on the advantages and disadvantages of each noise attenuation method and the characteristics of each seismic attribute analysis, we propose a suitable noise attenuation method to improve the result of seismic attribute analysis.

키워드

과제정보

이 논문은 2021학년도 경북대학교 신임교수정착연구비에 의하여 연구되었음. 본 연구에 사용된 자료는 한국지질자원연구원으로부터 제공받았음.

참고문헌

  1. Alali, A., Kazei, V., Altaf, B., Zhang, X. and Alkhalifah, T. (2020) Time-lapse Cross-equalization by deep learning. European Association of Geoscientists & Engineers, v.2020, n.1, p.1-5. https://doi.org/10.3997/2214-4609.202011720.
  2. Al-Dossary, S. (2015) Preconditioning seismic data for channel detection. Interpretation, 3(1), T. 1-4, https://doi.org/10.1190/INT2014-0031.1.
  3. Ashraf, U., Zhu, P., Yasin, Q., Anees, A., Imraz, M., Mangi, H.N. and Shakeel, S. (2019) Classification of reservoir facies using well log and 3D seismic attributes for prospect evaluation and field development: A case study of Sawan gas field, Pakistan. Journal of Petroleum Science and Engineering, v.175, p.338-351. https://doi.org/10.1016/j.petrol.2018.12.060.
  4. Bacon, M., Simm, R. and Redshaw, T. (2007) 3-D seismic interpretation. Cambridge University Press, New York, 234p.
  5. Barnes, A. E. (2016) Handbook of poststack seismic attributes. Society of Exploration Geophysicists, v.21, 254p. https://doi.org/10.1190/1.9781560803324.
  6. Brouwer, F. and Huck, A. (2011) An integrated workflow to optimize discontinuity attributes for the imaging of faults. Proceedings: Attributes: New Views on Seismic Imaging-Their Use in Exploration and Production, GCSSEPM, 31st Annual Conference (2011), p.496-533. doi.org/10.5724/gcs.11.31.0496.
  7. Brownrigg, D.R. (1984) The weighted median filter. Communications of the ACM, v.27(8), p.807-818. doi.org/10.1145/358198.358222.
  8. Canales, L.L. (1984) Random noise reduction. In: SEG Technical Program Expanded Abstracts 1984. Society of Exploration Geophysicists, p.525-527. doi.org/10.1190/1.1894168.
  9. Candes, E., Demanet, L., Donoho, D. and Ying, X. (2006) Fast discrete curvelet transforms. Multiscale Modeling & Simulation, v.5, p.861-899. doi.org/10.1137/05064182X
  10. Chadwick, A., Williams, G., Delepine, N., Clochard, V., Labat, K., Sturton, S., Buddensiek, M., Dillen, M., Nickel, M., Lima, A.L., Arts, R., Neele, F. and Rossi, G. (2010) Quantitative analysis of time-lapse seismic monitoring data at the Sleipner CO 2 storage operation. The Leading Edge., v.29(2), p.170-177. doi.org/10.1190/1.3304820.
  11. Chopra, S. and Marfurt, K. (2006) Seismic Attributes-a promising aid for geologic prediction. CSEG Recorder, v.31(5), p.110-120.
  12. Chopra, S. and Marfurt, K.J. (2005) Seismic attributes-A historical perspective. Geophysics, v.70(5), 3SO-28SO, https://doi.org/10.1190/1.2098670.
  13. Chopra, S. and Marfurt, K.J. (2013) Preconditioning seismic data with 5D interpolation for computing geometric attributes. The Leading Edge, v.32(12), p.1456-1460. doi.org/10.1190/tle32121456.1.
  14. Chopra, S. and Marfurt, K. J. (2007) Seismic attributes for prospect identification and reservoir characterization. Society of Exploration Geophysicists and European Association of Geoscientists and Engineers, 481p, https://doi.org/10.1190/1.9781560801900.fm.
  15. Chopra, S. and Marfurt, K.J. (2008) Emerging and future trends in seismic attributes. The Leading Edge, v.27(3), p.298-318. doi.org/10.1190/1.2896620.
  16. Chopra, S., Misra, S. and Marfurt, K.J. (2011) Coherence and curvature attributes on preconditioned seismic data. The Leading Edge, v.30(4), p.386-393. doi.org/10.1190/1.3575281.
  17. Connolly, D. and Garcia, R. (2012) GEOLOGY & GEOPHYSICSTracking hydrocarbon seepage in Argentina's Neuquen basin. World Oil, p.115.
  18. Dixit, A. and Mandal, A. (2020) Detection of gas chimney and its linkage with deep-seated reservoir in Poseidon, NW shelf, Australia from 3D seismic data using multi-attribute analysis and artificial neural network approach. Journal of Natural Gas Science and Engineering, v.83, 03586, doi.org/10.1016/j.jngse.2020.103586.
  19. Dondurur, D. (2018) Acquisition and processing of marine seismic data. Elsevier, Amsterdam, 606p.
  20. Fred, A. and Shivaji, N.D. (2013) Fundamentals of Petroleum Geophysics. Developments in Petroleum Science, v.60, p.37-92. doi: 10.1016/B978-0-444-50662-7.00003-2.
  21. Glorstad-Clark, E., Faleide, J.I., Lundschien, B.A. and Nystuen, J.P. (2010) Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area. Marine and Petroleum Geology, v.27(7), p.1448-1475. https://doi.org/10.1016/j.marpetgeo.2010.02.008.
  22. Hale, D. (2009) Structure-oriented smoothing and semblance. CWP report 635(635), p.261-270.
  23. Hale, D. (2011) Structure-oriented bilateral filtering of seismic images. In: SEG International Exposition and Annual Meeting, p.3596-3600. doi:10.1190/1.3627947.
  24. Hart, B.S. (2008). Channel detection in 3-D seismic data using sweetness. AAPG Bulletin, v.92(6), p.733-742. doi.org/10.1306/02050807127.
  25. He, K., Zhang, X., Ren, S. and Sun, J. (2016) Identity mappings in deep residual networks. In Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV 14, pp.630-645. doi.org/10.1007/978-3-319-46493-0_38.
  26. Herron, D.A. (2011) First steps in seismic interpretation. Society of Exploration Geophysicists, v.16, 203p. https://doi.org/10.1190/1.9781560802938.
  27. Holbrook, W.S., Fer, I., Schmitt, R.W., Lizarralde, D., Klymak, J.M., Helfrich, L.C. and Kubichek, R. (2013) Estimating oceanic turbulence dissipation from seismic images. Journal of Atmospheric and Oceanic Technology, v.30(8), p.1767-1788. https://doi.org/10.1175/JTECH-D-12-00140.1.
  28. Horozal, S., Chae, S., Kim, D.H., Seo, J.M., Lee, S.M., Han, H.S., Cukur, D. and Kong, G.S. (2021) Seismic evidence of shallow gas in sediments on the southeastern continental shelf of Korea, East Sea (Japan Sea). Marine and Petroleum Geology, v.133, 105291. doi.org/10.1016/j.marpetgeo.2021.105291.
  29. Imran, Q.S., Siddiqui, N.A., Latiff, A.H.A., Bashir, Y., Khan, M., Qureshi, K., Al-Masgari, A.A-S., Ahmed, N. and Jamil, M. (2021) Automated Fault Detection and Extraction under Gas Chimneys Using Hybrid Discontinuity Attributes. Applied Sciences, v.11(16), p.7218. doi.org/10.3390/app11167218.
  30. Ismail, A., Ewida, H.F., Al-Ibiary, M.G., Gammaldi, S. and Zollo, A. (2020) Identification of gas zones and chimneys using seismic attributes analysis at the Scarab field, offshore, Nile Delta, Egypt. Petroleum Research, v.5(1), p.59-69. https://doi.org/10.1016/j.ptlrs.2019.09.002.
  31. Ismail, A., Ewida, H.F., Nazeri, S., Al-Ibiary, M.G. and Zollo, A. (2022) Gas channels and chimneys prediction using artificial neural networks and multi-seismic attributes, offshore West Nile Delta, Egypt. Journal of Petroleum Science and Engineering, v.208, 109349. https://doi.org/10.1016/j.petrol.2021.109349.
  32. Jaglan, H., Qayyum, F. and Helene, H. (2015) Unconventional seismic attributes for fracture characterization. First Break, v.33(3), p.101-109. doi.org/10.3997/1365-2397.33.3.79520.
  33. Jesus, C., Azul, M.O., Lupinacci, W.M. and Machado, L. (2019) Multiattribute framework analysis for the identification of carbonate mounds in the Brazilian presalt zone. Interpretation, v.7(2), p.467-476. doi.org/10.1190/INT-2018-0004.1.
  34. Judd, A.G. and Hovland, M. (1992) The evidence of shallow gas in marine sediments. Continental Shelf Research, v.12(10), p.1081-1095. doi.org/10.1016/0278-4343(92)90070-Z.
  35. Jun, H. and Cho, Y. (2022) Repeatability enhancement of time-lapse seismic data via a convolutional autoencoder. Geophysical Journal International, v.228(2), p.1150-1170. https://doi.org/10.1093/gji/ggab397.
  36. Jun, H., Jou, H.T., Kim, C.H., Lee, S.H. and Kim, H.J. (2020) Random noise attenuation of sparker seismic oceanography data with machine learning. Ocean Science, v.16(6), p.1367-1383. https://doi.org/10.5194/os-16-1367-2020.
  37. Khasraji-Nejad, H., Roshandel Kahoo, A., Soleimani Monfared, M., Radad, M. and Khayer, K. (2021) Proposing a new strategy in multi-seismic attribute combination for identification of buried channel. Marine Geophysical Research, 42(4), 35. doi.org/10.1007/s11001-021-09458-6.
  38. Kim, S. and Jun, H. (2022) The Use of Unsupervised Machine Learning for the Attenuation of Seismic Noise. Geophysics and Geophysical Exploration, v.25(2), p.71-84. doi: 10.7582/GGE.2022.25.2.071
  39. Kim, Y.J., Cheong, S., Chun, J.H., Cukur, D., Kim, S.P., Kim, J.K. and Kim, B.Y. (2020) Identification of shallow gas by seismic data and AVO processing: Example from the southwestern continental shelf of the Ulleung Basin, East Sea, Korea. Marine and Petroleum Geology, 117, 104346, doi.org/10.1016/j.marpetgeo.2020.104346.
  40. Kluesner, J.W. and Brothers, D.S. (2016) Seismic attribute detection of faults and fluid pathways within an active strike-slip shear zone: New insights from high-resolution 3D P-CableTM seismic data along the Hosgri Fault, offshore California. Interpretation, v.4(1), SB. p.131-148. doi.org/10.1190/INT-2015-0143.1.
  41. Kumar, P.C. and Sain, K. (2018) Attribute amalgamation-aiding interpretation of faults from seismic data: An example from Waitara 3D prospect in Taranaki basin off New Zealand. Journal of Applied Geophysics, v.159, p.52-68. https://doi.org/10.1016/j.jappgeo.2018.07.023.
  42. Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M. and Aila, T. (2018) Noise2Noise: Learning image restoration without clean data. In Proceedings of the 35th international conference on machine learning (icml), v.80, p.2965-2974. doi.org/10.48550/arXiv.1803.04189.
  43. Li, H., Yang, W. and Yong, X. (2018) Deep learning for ground-roll noise attenuation. In SEG Technical Program Expanded Abstracts 2018, p.1981-1985. https://doi.org/10.1190/segam2018-2981295.1.
  44. Liu, B., Yue, J., Zuo, Z., Xu, X., Fu, C., Yang, S. and Jiang, P. (2021) Unsupervised deep learning for random noise attenuation of seismic data. IEEE Geoscience and Remote Sensing Letters, v.19, p.1-5. doi: 10.1109/LGRS.2021.3057631.
  45. Liu, D., Wang, W., Chen, W., Wang, X., Zhou, Y. and Shi, Z. (2018) Random noise suppression in seismic data: What can deep learning do? In SEG International Exposition and Annual Meeting (pp. SEG-2018). https://doi.org/10.1190/segam2018-2998114.1.
  46. Liu, D., Wang, W., Wang, X., Wang, C., Pei, J. and Chen, W. (2019) Poststack seismic data denoising based on 3-D convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, v.58(3), p.1598-1629. https://doi.org/10.1109/TGRS.2019.2947149.
  47. Liu, G., Chen, X., Du, J. and Wu, K. (2012) Random noise attenuation using f-x regularized nonstationary autoregression. Geophysics, v.77(2), p.V61-V69. doi.org/10.1190/geo2011-0117.1
  48. Mohebian, R., Riahi, M.A. and Yousefi, O. (2018) Detection of channel by seismic texture analysis using Grey Level Cooccurrence Matrix based attributes. Journal of Geophysics and Engineering, v.15(5), p.1953-1962. https://doi.org/10.1088/1742-2140/aac099.
  49. Nam, H., Lim, B., Kweon, I. and Kim, J. (2020) Removal of Seabed Multiples in Seismic Reflection Data using Machine Learning, Geophysics and Geophysical Exploration, v.23(3), p.168-177. https://doi.org/10.7582/GGE.2020.23.3.00168.
  50. Okay, S. and Aydemir, S. (2016) Control of active faults and sea level changes on the distribution of shallow gas accumulations and gas-related seismic structures along the central branch of the North Anatolian Fault, southern Marmara shelf, Turkey. Geodinamica Acta, v.28(4), p.328-346. doi.org/10.1080/09853111.2016.1183445.
  51. Qi, J., Lyu, B., AlAli, A., Machado, G., Hu, Y. and Marfurt, K. (2019) Image processing of seismic attributes for automatic fault extraction. Geophysics, v.84(1), O. 25-37. doi.org/10.1190/geo2018-0369.1.
  52. Raef, A.E., Mattern, F., Philip, C. and Totten, M.W. (2015) 3D seismic attributes and well-log facies analysis for prospect identification and evaluation: Interpreted palaeoshoreline implications, Weirman Field, Kansas, USA. Journal of Petroleum science and Engineering, v.133, p.40-51. doi.org/10.1016/j.petrol.2015.04.028.
  53. Ramu, R. and Sain, K. (2021) Multi-attribute and artificial neural network analysis of seismic inferred chimney-like features in marine sediments: a study from KG Basin, India. Journal of the Geological Society of India, v.97, p.238-242. https://doi.org/10.1007/s12594-021-1672-8.
  54. Rutherford, S.R. and Williams, R.H. (1989) Amplitude-versus-offset variations in gas sands. Geophysics, v.54(6), p.680-688. https://doi.org/10.1190/1.1442696.
  55. Saad, O.M. and Chen, Y. (2020) Deep denoising autoencoder for seismic random noise attenuation. Geophysics, 85(4), V. 367-V376. https://doi.org/10.1190/geo2019-0468.1
  56. Sanda, O., Mabrouk, D., Tabod, T.C., Marcel, J., Essi, J.M.A. and Ngos III, S. (2020) The integrated approach to seismic attributes of lithological characterization of reservoirs: case of the F3 Block, North Sea-Dutch Sector. Open Journal of Earthquake Research, v.9(3), p.273-288. https://doi.org/10.4236/ojer.2020.93016.
  57. Satyavani, N., Sain, K., Lall, M. and Kumar, B.J.P. (2008) Seismic attribute study for gas hydrates in the Andaman Offshore India. Marine Geophysical Researches, v.29, p.167-175. doi.org/10.1007/s11001-008-9053-x.
  58. Schroot, B.M., Klaver, G.T. and Schuttenhelm, R.T. (2005) Surface and subsurface expressions of gas seepage to the seabed-examples from the Southern North Sea. Marine and Petroleum Geology, v.22(4), p.499-515. doi.org/10.1016/j.marpetgeo.2004.08.007.
  59. Shin, J., Kim, H., Kim, W., Kang, D., Kim, C., Park, C. and Jeong, J. (2020) Seismic imaging offshore Pohang using small-boat ultra-high-resolution 3D seismic survey. JOURNAL OF SEISMIC EXPLORATION, v.29, p.125-138.
  60. Shin, S.R., Kim, C.S. and Jo, C.H. (2008) A study on the shallow marine site survey using seismic reflection and refraction method. Geophysics and Geophysical Exploration, v.11(2), p.109-115.
  61. Si, X. and Yuan, Y. (2018) Random noise attenuation based on residual learning of deep convolutional neural network. In SEG International Exposition and Annual Meeting (pp. SEG-2018). https://doi.org/10.1190/segam2018-2985176.1.
  62. Singh, D., Kumar, P.C. and Sain, K. (2016) Interpretation of gas chimney from seismic data using artificial neural network: A study from Maari 3D prospect in the Taranaki basin, New Zealand. Journal of Natural Gas Science and Engineering, v.36, p.339-357. https://doi.org/10.1016/j.jngse.2016.10.039.
  63. Tingdahl, K.M. and de Groot, P.F. (2003) Post-stack dip-and azimuth processing. Journal of Seismic Exploration, v.12(2), p.113-126.
  64. Weickert, J. (1998) Anisotropic diffusion in image processing, Teubner Verlag.
  65. Yang, H., Kim, J. and Choe, J. (2017) Field development optimization in mature oil reservoirs using a hybrid algorithm. Journal of Petroleum Science and Engineering, v.156, p.41-50. doi.org/10.1016/j.petrol.2017.05.009.
  66. Yang, L., Wang, S., Chen, X., Saad, O.M., Chen, W., Oboue, Y.A.S.I. and Chen, Y. (2021) Unsupervised 3-D random noise attenuation using deep skip autoencoder, IEEE Transactions on Geoscience and Remote Sensing, v.60, p.1-16. https://doi.org/10.1109/tgrs.2021.3100455.
  67. Yilmaz, O. (2001) Seismic Data Analysis. Processing, Inversion, and Interpretation of Seismic Data. Society of Exploration Geophysicists, 2065p. doi: 10.1190/1.9781560801580.fm.
  68. Zhang, K., Zuo, W., Chen, Y., Meng, D. and Zhang, L. (2017) Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising, In IEEE Transactions on Image Processing, v.26, n.7, p.3142-3155. doi: 10.1109/TIP.2017.2662206.
  69. Zheng, Y., Yuan, Y. and Si, X. (2020) The improved DnCNN for linear noise attenuation. In SEG 2019 Workshop: Mathematical Geophysics: Traditional vs Learning, Beijing, China, 5-7 November 2019, p.56-59. https://doi.org/10.1190/iwmg2019_14.1.
  70. Zheng, Z.H., Kavousi, P. and Di, H.B. (2014) Multi-attributes and neural network-based fault detection in 3D seismic interpretation. Advanced Materials Research, v.838, p.1497-1502. doi.org/10.4028/www.scientific.net/AMR.838-841.1497.