DOI QR코드

DOI QR Code

Quality Enhancement of Recycled Concrete Aggregates for Backfill Materials by CO2 Carbonation: Development of a 5-kg-scale Prototype Reactor

이산화탄소의 탄산화 반응을 이용한 되메움재용 순환골재의 품질 개량: 5kg급 프로토타입 반응조 개발

  • Kim, Jinwoo (Dept. of Civil and Environmental Engrg., Korea Advanced Institute of Science and Technology [KAIST]) ;
  • Jeon, Min-Kyung (CO2 Geological Storage Research Center, Korea Institute of Geoscience and Mineral Resources [KIGAM]) ;
  • Kwon, Tae-Hyuk (Dept. of Civil and Environmental Engrg., Korea Advanced Institute of Science and Technology [KAIST]) ;
  • Kim, Nam-Ryong (Water Infrastructure Research Center, K-water Research Institute)
  • 김진우 (한국과학기술원 건설및환경공학과) ;
  • 전민경 (한국지질자원연구원 CO2지중저장센터) ;
  • 권태혁 (한국과학기술원 건설및환경공학과) ;
  • 김남룡 (K-water연구원 물인프라안전연구소)
  • Received : 2024.01.09
  • Accepted : 2024.02.06
  • Published : 2024.02.29

Abstract

In this study, recycled concrete aggregates (RCA) were treated in a 5-kg-scale prototype reactor with carbon dioxide (CO2) to enhance their material quality and geotechnical performance. The aggregate crushing value (ACV) and California bearing ratio (CBR) were measured on untreated RCAs and CO2-treated RCAs. After CO2 treatment, the ACV decreased from 35.6% to 33.2%, and the CBR increased from 97.5% to 102.4%. The CO2 treatment caused a reduction of fine particle generation and an increase in bearing capacity through carbonation. When CO2 treatment was performed with mechanical agitation, which provided additional enhancement in mechanical quality, the ACV was reduced further to 30.3%, and the CBR increased to 137.7%. If upscaled effectively, the proposed CO2 treatment technique would be an effective method to reduce carbon emissions in construction industries.

본 연구에서는 이산화탄소 처리를 통한 순환골재의 지반공학적 성능 개량을 평가하기 위하여 5kg급 프로토타입 반응조를 제작하였다. 제작된 반응조를 이용하여 이산화탄소 처리한 순환골재와 미처리 순환골재의 골재 파쇄값과 노상토지지력비를 측정하였다. 이산화탄소 처리를 통해 골재 파쇄값은 35.6%에서 33.2%로 2.4% 감소하고 노상토지 지력비는 97.5%에서 102.4%로 4.9% 증가하는 것이 관찰되었다. 탄산화 반응을 통해 생성된 탄산칼슘 염으로 인해 순환골재의 세립분 생성이 감소하고 지지력이 증가함을 알 수 있었다. 또한 교반을 함께할 경우 추가적인 역학적 개량 효과를 통해 골재 파쇄값이 30.3%로 감소하고 노상토지지력비는 137.7%로 증가하였다. 본 연구에서 기술된 이산화탄소 처리 기술의 현장 적용 시 건설 산업의 탄소배출을 효과적으로 줄일 수 있을 것으로 보인다.

Keywords

Acknowledgement

본 연구는 한국전력공사의 기초연구과제(R22XO05-11)에 의해 수행된 연구로, 이에 깊은 감사를 드립니다.

References

  1. Afshar, T., Disfani, M. M., Arulrajah, A., Narsilio, G. A., and Emam, S. (2017), Impact of Particle Shape on Breakage of Recycled Construction and Demolition Aggregates, Powder Technology, Vol. 308, pp.1-12. https://doi.org/10.1016/j.powtec.2016.11.043
  2. ASTM International (2015), Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM C 136-01.
  3. ASTM International (2021), Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils, ASTM D1883-21.
  4. British Standard (1990), Testing aggregates - Part 110: Methods for determination of aggregate crushing value (ACV), BS 812-110.
  5. Chen, J., Tinjum, J. M., and Edil, T. B. (2013), Leaching of Alkaline Substances and Heavy Metals from Recycled Concrete Aggregate Used as Unbound base Course, Transportation Research Record, Vol.2349, No.1, pp.81-90. https://doi.org/10.3141/2349-10
  6. Fang, X., Xuan, D., and Poon, C. S. (2017), Empirical Modelling of CO2 Uptake by Recycled Concrete Aggregates under Accelerated Carbonation Conditions, Materials and Structures, Vol.50, No.4, p.200.
  7. Kang, S., Kim, G., Wi, J., Ahn, T., Lee, D.-S., and Choi, H. (2015), Effect of Particle Breakage on Compaction and Thermal Resistivity of Concrete-based Recycled Aggregates, Journal of the Korean Geotechnical Society, Vol.31, No.10, pp.17-28.
  8. Kolay, P. K. and Akentuna, M. (2014), Characterization and Utilization of Recycled Concrete Aggregate from Illinois as a Construction Material, Geo-Congress 2014: Geo-characterization and Modeling for Sustainability, Abu-Farsakh, M, Yu, X., Hoyos, L. R. ed., Atlanta, Georgia, USA, pp.3561-3570.
  9. Kwon, T.-H., Ham, S.-M., and Jeon, M.-K. (2023), Dry Type CO2 Treatment Device for Improving Quality of Recycled Aggregate and System Thereof, Korean Patent (Application number: 10-2023-0160176), November 17, 2023.
  10. Li, Y., Zhang, S., Wang, R., Zhao, Y., and Men, C. (2019), Effects of Carbonation Treatment on the Crushing Characteristics of Recycled Coarse Aggregates, Construction and Building Materials, Vol.201, pp.408-420. https://doi.org/10.1016/j.conbuildmat.2018.12.158
  11. Liang, C., Pan, B., Ma, Z., He, Z., and Duan, Z. (2020), Utilization of CO2 Curing to Enhance the Properties of Recycled Aggregate and Prepared Concrete: A Review, Cement and Concrete Composites, Vol.105, pp.103446.
  12. Mamirov, M., Hu, J., and Cavalline, T. (2022), Geometrical, Physical, Mechanical, and Compositional Characterization of Recycled Concrete Aggregates, Journal of Cleaner Production, Vol.339, pp.130754.
  13. Park, S. S., Chen, K., Lee, Y.-J., and Moon, H.-D. (2017), A Study on Crushing and Engineering Characteristics Caused by Compaction of Recycled Aggregates, Journal of the Korean Geotechnical Society, Vol.33, No.12, pp.35-44. https://doi.org/10.7843/KGS.2017.33.12.35
  14. Park, S.-S., Kim, S. J., and Moon, H. D. (2016), Crushing Characteristics of Single Particle of Recycled Aggregate from Waste Concrete, Journal of the Korean Geotechnical Society, Vol.32, No.12, pp.23-32. https://doi.org/10.7843/KGS.2016.32.12.23
  15. Shi, C., Liu, M., He, P., and Ou, Z. (2012), Factors Affecting Kinetics of CO2 Curing of Concrete, Journal of Sustainable Cement-Based Materials, Vol.1, No.1-2, pp.24-33. https://doi.org/10.1080/21650373.2012.727321
  16. Tam, V. W., Soomro, M., and Evangelista, A. C. J. (2021), Quality Improvement of Recycled Concrete Aggregate by Removal of Residual Mortar: A Comprehensive Review of Approaches Adopted, Construction and Building Materials, Vol.288, pp.123066.
  17. Tam, V. W., Tam, C. M., and Le, K. N. (2007), Removal of Cement Mortar Remains from Recycled Aggregate Using Pre-soaking Approaches, Resources, Conservation and Recycling, Vol.50, No.1, pp.82-101. https://doi.org/10.1016/j.resconrec.2006.05.012
  18. Verian, K. P., Ashraf, W., and Cao, Y. (2018), Properties of Recycled Concrete Aggregate and Their Influence in New Concrete Production, Resources, Conservation and Recycling, Vol.133, pp.30-49. https://doi.org/10.1016/j.resconrec.2018.02.005
  19. Wang, B., Yan, L., Fu, Q., and Kasal, B. (2021), A Comprehensive Review on Recycled Aggregate and Recycled Aggregate Concrete, Resources, Conservation and Recycling, Vol.171, pp.105565.
  20. Wi, J., Hong, S.-Y., Lee, D.-S., Park, S., and Choi, H. (2011), Evaluation of Compaction and Thermal Characteristics of Recycled Aggregates for Backfilling Power Transmission Pipeline, Journal of the Korean Geotechnical Society, Vol.27, No.7, pp.17-33.
  21. Xuan, D., Zhan, B. and Poon, C. S. (2016), Assessment of Mechanical Properties of Concrete Incorporating Carbonated Recycled Concrete Aggregates, Cement and Concrete Composites, Vol. 65, pp.67-74. https://doi.org/10.1016/j.cemconcomp.2015.10.018
  22. Zadeh, A. H., Mamirov, M., Kim, S., and Hu, J. (2021), CO2-treatment of Recycled Concrete Aggregates to Improve Mechanical and Environmental Properties for Unbound Applications, Construction and Building Materials, Vol.275, pp.122180.