DOI QR코드

DOI QR Code

Examining Thermal Sensation and PMV Prediction Across Diverse Metabolic Rates in an Air-conditioned Environment

냉방 시 다양한 대사량 활동 환경에서의 온열감 조사와 PMV 모델의 예측 비교

  • Kwak, Ji-Young (Dept. of Interior Architecture and Built Environment, Yonsei University) ;
  • Chun, Chung-Yoon (Dept. of Interior Architecture and Built Environment, Yonsei University)
  • Received : 2023.10.24
  • Accepted : 2024.01.18
  • Published : 2024.02.29

Abstract

This study explores thermal sensation and compares it with PMV prediction across different metabolic rate activities in an air-conditioned environment. The experiments, conducted in a climate chamber, simulated various metabolic rates and temperatures for each condition. Twelve subjects, comprising six males and six females, participated, and environmental parameters and skin temperature were measured. Subjects assessed their thermal sensation, comfort, and preference every three minutes. Results revealed differences between PMV values and actual thermal sensations, with the gap widening as the metabolic rate increased. Additionally, the time for thermal sensation to reach neutrality, the duration of maintaining a neutral thermal sensation, and subsequent changes in sensation varied among metabolic rates and individuals. These findings highlighted limitations in the existing PMV model and offer insights into areas needing improvement for predicting thermal sensations in environments with diverse metabolic rates and temperature fluctuations.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. RS-2023-00208588).

References

  1. ANSI/ASHRAE Addendum b to ANSI/ASHRAE Standard 55-2020.
  2. ANSI/ASHRAE Standard 55, 2020. Thermal Environmental Conditions for Human Occupancy. ASHRAE.
  3. Beizaee, A., & Firth, S. (2011). A comparison of calculated and subjective thermal comfort sensation in home and office environment.
  4. Charles, K. E. (2003). Fanger's thermal comfort and draught models.
  5. Cui, C. Y., & Schlessinger, D. (2015). Eccrine sweat gland development and sweat secretion. Experimental dermatology, 24(9), 644-650.
  6. de Dear, R., Kim, J., Candido, C., & Deuble, M. (2015). Adaptive thermal comfort in Australian school classrooms. Building Research & Information, 43(3), 383-398. https://doi.org/10.1080/09613218.2015.991627
  7. Del Ferraro, S., Iavicoli, S., Russo, S., & Molinaro, V. (2015). A field study on thermal comfort in an Italian hospital considering differences in gender and age. Applied ergonomics, 50, 177-184. https://doi.org/10.1016/j.apergo.2015.03.014
  8. Fletcher, M. J., Glew, D. W., Hardy, A., & Gorse, C. (2020). A modified approach to metabolic rate determination for thermal comfort prediction during high metabolic rate activities. Building and environment, 185, 107302.
  9. Freire, R. Z., Oliveira, G. H., & Mendes, N. (2008). Predictive controllers for thermal comfort optimization and energy savings. Energy and buildings, 40(7), 1353-1365. https://doi.org/10.1016/j.enbuild.2007.12.007
  10. Goto, T., Toftum, J., de Dear, R., & Fanger, P. O. (2006). Thermal sensation and thermophysiological responses to metabolic step-changes. International Journal of Biometeorology, 50, 323-332.
  11. Huizenga, C., Hui, Z. & Arens, E. (2001). A model of human physiology and comfort for assessing complex thermal environments. Building and environment, 36(6), pp.691-699. https://doi.org/10.1016/S0360-1323(00)00061-5
  12. Humphreys, M. A., & Nicol, J. F. (2002). The validity of ISO-PMV for predicting comfort votes in every-day thermal environments. Energy and buildings, 34(6), 667-684. https://doi.org/10.1016/S0378-7788(02)00018-X
  13. International Organization for Standardization. (2005). Ergonomics of the thermal environment-Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. (ISO Standard No. 7730:2005). https://www.iso.org/standard/39155.html
  14. International Organization for Standardization. (2004). Ergonomics-Evaluation of thermal strain by physiological measurements. (ISO Standard No. 9886:2004). https://www.iso.org/standard/34110.html
  15. Ji, W., Luo, M., Cao, B., Zhu, Y., Geng, Y., & Lin, B. (2018). A new method to study human metabolic rate changes and thermal comfort in physical exercise by CO2 measurement in an airtight chamber. Energy and Buildings, 177, 402-412. https://doi.org/10.1016/j.enbuild.2018.08.018
  16. Jones, B. W. (2002). Capabilities and limitations of thermal models for use in thermal comfort standards. Energy and Buildings, 34(6), 653-659. https://doi.org/10.1016/S0378-7788(02)00016-6
  17. Jung, G. J., Song, S. K., Ahn, Y. C., Oh, G. S., & Im, Y. B. (2011). Experimental research on thermal comfort in the university classroom of regular semesters in Korea. Journal of Mechanical Science and Technology, 25, 503-512. https://doi.org/10.1007/s12206-010-1219-1
  18. Khan, M. H., & Pao, W. (2015). Thermal comfort analysis of PMV model prediction in air conditioned and naturally ventilated buildings. Energy Procedia, 75, 1373-1379. https://doi.org/10.1016/j.egypro.2015.07.218
  19. Kim, J., Bauman, F., Raftery, P., Arens, E., Zhang, H., Fierro, G., ... & Culler, D. (2019). Occupant comfort and behavior: High-resolution data from a 6-month field study of personal comfort systems with 37 real office workers. Building and Environment, 148, 348-360. https://doi.org/10.1016/j.buildenv.2018.11.012
  20. Kim, J., Schiavon, S., & Brager, G. (2018). Personal comfort models-A new paradigm in thermal comfort for occupant-centric environmental control. Building and Environment, 132, 114-124.
  21. Kondo, N., Nakadome, M., Zhang, K., Shiojiri, T., Shibasaki, M., Hirata, K., & Iwata, A. (1997). The effect of change in skin temperature due to evaporative cooling on sweating response during exercise. International journal of biometeorology, 40, 99-102. https://doi.org/10.1007/s004840050026
  22. Pandey, B., Bohara, B., Pungaliya, R., Patwardhan, S. C., & Banerjee, R. (2021). A thermal comfort-driven model predictive controller for residential split air conditioner. Journal of Building Engineering, 42, 102513.
  23. Rawal, R., Schweiker, M., Kazanci, O. B., Vardhan, V., Jin, Q., & Duanmu, L. (2020). Personal comfort systems: A review on comfort, energy, and economics. Energy and Buildings, 214, 109858.
  24. Tartarini, F., Schiavon, S., Cheung, T., & Hoyt, T. (2020). CBE Thermal Comfort Tool: Online tool for thermal comfort calculations and visualizations. SoftwareX, 12, 1005.
  25. Ter Mors, S., Hensen, J. L., Loomans, M. G., & Boerstra, A. C. (2011). Adaptive thermal comfort in primary school classrooms: Creating and validating PMV-based comfort charts. Building and Environment, 46(12), 2454-2461. https://doi.org/10.1016/j.buildenv.2011.05.025
  26. Van Hoof, J. (2008). Forty years of Fanger's model of thermal comfort: comfort for all?. Indoor air, 18(3), 182-201. https://doi.org/10.1111/j.1600-0668.2007.00516.x
  27. Wu, J., Li, X., Lin, Y., Yan, Y., & Tu, J. (2020). A PMV-based HVAC control strategy for office rooms subjected to solar radiation. Building and Environment, 177, 106863.
  28. Wu, Y., Cao, B., Hu, M., Lv, G., Meng, J., & Zhang, H. (2023). Development of personal comfort model and its use in the control of air conditioner. Energy and Buildings, 285, 112900.
  29. Yao, R., Liu, J., & Li, B. (2010). Occupants' adaptive responses and perception of thermal environment in naturally conditioned university classrooms. Applied Energy, 87(3), 1015-1022.