Acknowledgement
이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. RS-2023-00208588).
References
- ANSI/ASHRAE Addendum b to ANSI/ASHRAE Standard 55-2020.
- ANSI/ASHRAE Standard 55, 2020. Thermal Environmental Conditions for Human Occupancy. ASHRAE.
- Beizaee, A., & Firth, S. (2011). A comparison of calculated and subjective thermal comfort sensation in home and office environment.
- Charles, K. E. (2003). Fanger's thermal comfort and draught models.
- Cui, C. Y., & Schlessinger, D. (2015). Eccrine sweat gland development and sweat secretion. Experimental dermatology, 24(9), 644-650.
- de Dear, R., Kim, J., Candido, C., & Deuble, M. (2015). Adaptive thermal comfort in Australian school classrooms. Building Research & Information, 43(3), 383-398. https://doi.org/10.1080/09613218.2015.991627
- Del Ferraro, S., Iavicoli, S., Russo, S., & Molinaro, V. (2015). A field study on thermal comfort in an Italian hospital considering differences in gender and age. Applied ergonomics, 50, 177-184. https://doi.org/10.1016/j.apergo.2015.03.014
- Fletcher, M. J., Glew, D. W., Hardy, A., & Gorse, C. (2020). A modified approach to metabolic rate determination for thermal comfort prediction during high metabolic rate activities. Building and environment, 185, 107302.
- Freire, R. Z., Oliveira, G. H., & Mendes, N. (2008). Predictive controllers for thermal comfort optimization and energy savings. Energy and buildings, 40(7), 1353-1365. https://doi.org/10.1016/j.enbuild.2007.12.007
- Goto, T., Toftum, J., de Dear, R., & Fanger, P. O. (2006). Thermal sensation and thermophysiological responses to metabolic step-changes. International Journal of Biometeorology, 50, 323-332.
- Huizenga, C., Hui, Z. & Arens, E. (2001). A model of human physiology and comfort for assessing complex thermal environments. Building and environment, 36(6), pp.691-699. https://doi.org/10.1016/S0360-1323(00)00061-5
- Humphreys, M. A., & Nicol, J. F. (2002). The validity of ISO-PMV for predicting comfort votes in every-day thermal environments. Energy and buildings, 34(6), 667-684. https://doi.org/10.1016/S0378-7788(02)00018-X
- International Organization for Standardization. (2005). Ergonomics of the thermal environment-Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. (ISO Standard No. 7730:2005). https://www.iso.org/standard/39155.html
- International Organization for Standardization. (2004). Ergonomics-Evaluation of thermal strain by physiological measurements. (ISO Standard No. 9886:2004). https://www.iso.org/standard/34110.html
- Ji, W., Luo, M., Cao, B., Zhu, Y., Geng, Y., & Lin, B. (2018). A new method to study human metabolic rate changes and thermal comfort in physical exercise by CO2 measurement in an airtight chamber. Energy and Buildings, 177, 402-412. https://doi.org/10.1016/j.enbuild.2018.08.018
- Jones, B. W. (2002). Capabilities and limitations of thermal models for use in thermal comfort standards. Energy and Buildings, 34(6), 653-659. https://doi.org/10.1016/S0378-7788(02)00016-6
- Jung, G. J., Song, S. K., Ahn, Y. C., Oh, G. S., & Im, Y. B. (2011). Experimental research on thermal comfort in the university classroom of regular semesters in Korea. Journal of Mechanical Science and Technology, 25, 503-512. https://doi.org/10.1007/s12206-010-1219-1
- Khan, M. H., & Pao, W. (2015). Thermal comfort analysis of PMV model prediction in air conditioned and naturally ventilated buildings. Energy Procedia, 75, 1373-1379. https://doi.org/10.1016/j.egypro.2015.07.218
- Kim, J., Bauman, F., Raftery, P., Arens, E., Zhang, H., Fierro, G., ... & Culler, D. (2019). Occupant comfort and behavior: High-resolution data from a 6-month field study of personal comfort systems with 37 real office workers. Building and Environment, 148, 348-360. https://doi.org/10.1016/j.buildenv.2018.11.012
- Kim, J., Schiavon, S., & Brager, G. (2018). Personal comfort models-A new paradigm in thermal comfort for occupant-centric environmental control. Building and Environment, 132, 114-124.
- Kondo, N., Nakadome, M., Zhang, K., Shiojiri, T., Shibasaki, M., Hirata, K., & Iwata, A. (1997). The effect of change in skin temperature due to evaporative cooling on sweating response during exercise. International journal of biometeorology, 40, 99-102. https://doi.org/10.1007/s004840050026
- Pandey, B., Bohara, B., Pungaliya, R., Patwardhan, S. C., & Banerjee, R. (2021). A thermal comfort-driven model predictive controller for residential split air conditioner. Journal of Building Engineering, 42, 102513.
- Rawal, R., Schweiker, M., Kazanci, O. B., Vardhan, V., Jin, Q., & Duanmu, L. (2020). Personal comfort systems: A review on comfort, energy, and economics. Energy and Buildings, 214, 109858.
- Tartarini, F., Schiavon, S., Cheung, T., & Hoyt, T. (2020). CBE Thermal Comfort Tool: Online tool for thermal comfort calculations and visualizations. SoftwareX, 12, 1005.
- Ter Mors, S., Hensen, J. L., Loomans, M. G., & Boerstra, A. C. (2011). Adaptive thermal comfort in primary school classrooms: Creating and validating PMV-based comfort charts. Building and Environment, 46(12), 2454-2461. https://doi.org/10.1016/j.buildenv.2011.05.025
- Van Hoof, J. (2008). Forty years of Fanger's model of thermal comfort: comfort for all?. Indoor air, 18(3), 182-201. https://doi.org/10.1111/j.1600-0668.2007.00516.x
- Wu, J., Li, X., Lin, Y., Yan, Y., & Tu, J. (2020). A PMV-based HVAC control strategy for office rooms subjected to solar radiation. Building and Environment, 177, 106863.
- Wu, Y., Cao, B., Hu, M., Lv, G., Meng, J., & Zhang, H. (2023). Development of personal comfort model and its use in the control of air conditioner. Energy and Buildings, 285, 112900.
- Yao, R., Liu, J., & Li, B. (2010). Occupants' adaptive responses and perception of thermal environment in naturally conditioned university classrooms. Applied Energy, 87(3), 1015-1022.