DOI QR코드

DOI QR Code

Mn-Cu/Al2O3 촉매 상에서 NO, CO 및 CH4 동시 산화

Simultaneous Oxidation of NO, CO, and CH4 over Mn-Cu/Al2O3 Catalyst

  • 정지은 (공주대학교 환경공학과) ;
  • 이창용 (공주대학교 환경공학과)
  • Ji Eun Jeong (Department of Environmental Engineering, Kongju National University) ;
  • Chang-Yong Lee (Department of Environmental Engineering, Kongju National University)
  • 투고 : 2023.09.15
  • 심사 : 2023.10.10
  • 발행 : 2024.02.10

초록

NO, CO 및 CH4의 동시 산화를 위한 4 종의 Mn-M/Al2O3 (M = Cu, Fe, Co, Ce) 촉매를 제조하여 산화 활성을 비교하고, 동시 산화활성이 가장 높은 Mn-Cu/Al2O3 촉매에 대해 XRD, Raman, XPS, O2-TPD 분석을 수행하였다. XRD 분석 결과, Mn-Cu/Al2O3 촉매에서는 담지된 Mn과 Cu는 복합산화물로 존재하였다. Raman 및 XPS 분석을 통해 Mn-Cu/Al2O3 촉매는 Mn-O-Cu 결합의 형성 과정에서 Mn 이온과 Cu 이온 간의 전자 수수가 일어남을 알 수 있었다. XPS O 1s 및 O2-TPD 분석을 통해 Mn-Cu/Al2O3 촉매는 Mn/Al2O3 촉매에 비해 이동성이 우수한 흡착산소 종이 증가했음을 알 수 있었다. Mn-Cu/Al2O3 촉매의 높은 동시 산화 활성은 이러한 결과에 기인한다고 판단된다. Mn-Cu/Al2O3 촉매 상에서 NO는 CO와 CH4 산화를 촉진하지만, NO 산화는 억제되었다. 이는 NO로부터 산화된 NO2가 CO 및 CH4의 산화제로 사용되었기 때문이라고 추측된다. CO와 CH4의 산화 반응은 경쟁하지만 촉매 활성 온도가 다르기 때문에 그 효과가 두드러지지 않았다.

Mn-M/Al2O3 (M = Cu, Fe, Co, and Ce) catalysts were prepared for simultaneous oxidation of NO, CO, and CH4, and their oxidation activities were compared. The Mn-Cu/ Al2O3 catalyst with the best simultaneous oxidation activity was characterized by XRD, Raman, XPS, and O2-TPD analysis. The result of XRD indicated that Mn and Cu existed as complex oxides in the Mn-Cu/Al2O3 catalyst. Raman and XPS results showed that electron transfer between Mn ions and Cu ions occurred during the formation of the Mn-O-Cu bond in the Mn-Cu/Al2O3 catalyst. The XPS O 1s and O2-TPD analyses showed that the Mn-Cu/Al2O3 catalyst has more adsorbed oxygen species with high mobility than the Mn/Al2O3 catalyst. The high simultaneous oxidation activity of the Mn-Cu/Al2O3 catalyst is attributed to these results. Gas-phase NO promotes the oxidation reactions of CO and CH4 in the Mn-Cu/Al2O3 catalyst while suppressing the NO oxidation reaction. These results were presumed to be because the oxidized NO was used as an oxidizing agent for CO and CH4. On the other hand, the oxidation reactions of CO and CH4 competed on the Mn-Cu/Al2O3 catalyst, but the effect was not noticeable because the catalyst activation temperature was different.

키워드

과제정보

이 논문은 환경부의 폐자원에너지화 전문인력양성사업으로 지원되었습니다.

참고문헌

  1. S. J. Lee and Y. Kim, A study on the demonstration of yellow plume elimination system from combined cycle power plant using liquid injection system, J. Korea Acad. Industr. Coop. Soc., 21, 317-324 (2020).
  2. S. P. Cho, Air pollution control system for combined cycle power plants in Korea, KCI News, 25, 28-33 (2022).
  3. M. An, S. Kim, and S. Lee, NOx reduction analysis from hybrid De-NOx facility of combined cycle power plant, KSFM, 24, 62-66 (2021).
  4. D. S. Yun and W. J. Yu, Early detection of combustion abnormality through analysis of blade path temperature pattern in gas turbine, Trans. Korean Soc. Mech. Eng. B., 47, 117-124 (2023). https://doi.org/10.3795/KSME-B.2023.47.2.117
  5. B. T. Lee and J. Choe, A study on the effect of operating temperature and NH3 on dust collection rate of electrostatic precipitator, Trans. Korean Inst. Elect. Eng., 70, 219-225 (2021).
  6. K. W. Kim, K. M. Lee, and S. C. Hong, A study of characterization for catalytic oxidation of nitrogen monoxide over Mn/TiO2 catalyst, Appl. Chem. Eng., 25, 474-480 (2014). https://doi.org/10.14478/ace.2014.1061
  7. I. Nova, C. Ciardelli, E. Tronconi, E. Chatterjee, and B. Bandl-Konrad, NH3-NO/NO2 chemistry over V-based catalysts and its role in the mechanism of the fast SCR reaction, Catal. Today, 114, 3-12 (2006). https://doi.org/10.1016/j.cattod.2006.02.012
  8. H. j. Kim, S. W. Choi, and C. S. Lee, Activity and characteristics of Cu-Mn oxide catalysts supported on γ-Al2O3, Korean Chem. Eng. Res., 44, 193-199 (2006).
  9. T. J. Cheon, H. J. Kim, and S. W. Choi, Catalytic oxidation of toluene over Mn-Ce/γ-Al2O3 catalyst doped with Ce, J. Korean Soc. Environ. Eng., 27, 513-518 (2005).
  10. M. S. Kim, S. W. Kim, and H. S. Chang, A Study on the characteristics of CO oxidation by NO poisoning in Pt/TiO2 catalyst, Clean Technol., 25, 296-301 (2019).
  11. F. Fan, L. Wang, L. Wang, J. Liu, and M. Wang, Low-temperature selective NO reduction by CO over copper-manganese oxide spinel, Catalyst, 12, 591 (2022)
  12. H. Wang, H. Chen, Y. Wang, and Y. K. Lyn, Performance and mechanism comparison of manganese oxides at different valence state for catalytic oxidation of NO, Chem. Eng. J., 361, 1161-1172 (2019). https://doi.org/10.1016/j.cej.2018.12.159
  13. Z. Liu, Y. Yi, S. Zhang, T. Zhu, J. Zhu, and J. Wang, Selective catalytic reduction of NOx with NH3 over Mn-Ce mixed oxide catalyst at low temperatures, Catal. Today, 216, 76-81 (2013). https://doi.org/10.1016/j.cattod.2013.06.009
  14. Y. Z. Zhou, S. Ren, M. Wang, J. Yang, Z. Chen, and L. Chen, Mn and Fe oxides co-effect on nanopolyhedron CeO2 catalyst for NH3-SCR of NO, J. Energy Inst., 99, 97-104 (2021). https://doi.org/10.1016/j.joei.2021.08.003
  15. B. Hillary, P. Sudarsanam, M. H. Amin, and S. K. Bhargava, Nanoscale cobalt-manganese oxide catalyst supported on shape-controlled cerium oxide: Effect of nanointerface configuration on structural, redox, and catalytic properties, Langmuir, 33, 1743-1750 (2017). https://doi.org/10.1021/acs.langmuir.6b03445
  16. Q. Tang, X. Gong, P. Zhao, and Y. Yang, Copper-manganese oxide catalyst supported on alumina: Physicochemical features and catalytic performances in the aerobic oxidation of benzyl alcohol, Appl. Catal. A: Gen., 389, 101-107 (2010). https://doi.org/10.1016/j.apcata.2010.09.014
  17. C. Sun, Y. Tang, F. Gao, J. Sun, K. Ma, C. Tang, and L. Dong, Effect of different manganese precursors as promoters on catalytic performance of CuO-MnOx/TiO2 catalyst for NO removal by CO, Phys. Chem. Chem. Phys., 17, 15996-16006 (2015). https://doi.org/10.1039/C5CP02158H
  18. M. Aghbolaghy, J. Soltan, and N. Chen, Role of surface carboxylates in the gas phase ozone-assisted catalytic oxidation of toluene, Catal. Lett., 147, 2421-2433 (2017). https://doi.org/10.1007/s10562-017-2143-0
  19. W. Sun, X. Li, Q. Zhao, J. Mu, and J. Chen, Fe-Mn mixed oxide catalysts synthesized by one-step urea precipitation method for the selective catalytic reduction of NOx with NH3 at low temperature, Catal. Lett., 148, 227-234 (2018). https://doi.org/10.1007/s10562-017-2209-z
  20. E. Rezaei and J. Soltan, Low temperature oxidation of toluene by ozone over MnOx/γ-alumina and MnOx/MCM-41 catalysts, Chem. Eng. J., 198-199, 482-490 (2012). https://doi.org/10.1016/j.cej.2012.06.016
  21. Z. Chen, Q. Yang, H. Li, X. Li, L. Wang, and S. C. Tsang, Cr-MnOx mixed-oxdie catalysts for selective catalytic reduction of NOx, J. Catal., 276, 56-65 (2010). https://doi.org/10.1016/j.jcat.2010.08.016
  22. H. H. Lee, K. H. Park, and W. S. Cha, Characterization of low temperature selective catalytic reduction over Ti added Mn-Cu metal oxides, J. Ind. Eng. Chem., 24, 599-604 (2013).
  23. C. Xuan, S. Han, L. Wang, X. Zhang, R. Sun, X. Cheng, Z. Wang, C. Ma, T. Zhao, and X. Hou, Mechanism of NO reduction by NH3 over CuMnOx catalysts and the influence mechanism of CO, Catal. Sci. Technol., 13, 3106-3124 (2023). https://doi.org/10.1039/D3CY00403A
  24. J. R. Li, W. P. Zhang, C. Li, and C. He, Efficient catalytic degradation of toluene at a readily prepared Mn-Cu catalyst: Catalytic performance and reaction pathway, J. Colloid Interface Sci., 591, 396-408 (2021). https://doi.org/10.1016/j.jcis.2021.01.096
  25. J. R. Li, W. P. Zhang, C. Li, H. Xiao, and C. He, Insight into the catalytic performance and reaction routes for toluene total oxidation over facilely prepared Mn-Cu bimetallic oxide catalysts, Appl. Surf. Sci., 550, 149179 (2021).
  26. Y. Yi, P. Zhang, Z. Qin, C. Yu, W. Li, Q. Qin, B. Li, M. Fan, X. Liang, and L. Dong, Low temperature CO oxidation catalyzed by flower-like Ni-Co-O: How physicochemical properties influence catalytic performance, RSC Adv., 8, 7110-7122 (2018). https://doi.org/10.1039/C7RA12635B
  27. M. AL-Harbi, R. Hayes, M. Votsmeier, and W. S. Epling, Competitive NO, CO and hydrocarbon oxidation reactions over a disel oxidation cataltyst, Can. J. Chem. Eng., 90, 1527-1538 (2012). https://doi.org/10.1002/cjce.20659