과제정보
이 연구는 2023년도 한국외국어대학교 교원연구지원사업 지원에 의하여 이루어진 것임
참고문헌
- Rubin, DB, Multiple imputation for nonresponse in surveys, John Wiley & Sons, New York, 1987
- Raghunathan TE, Lepkowski JM, Hoewyk JV, Solenberger P, "A multivariate technique for multiply imputing missing values using a sequence of regression models", Survey Methodology, Vol. 27, pp. 85-95. 2001
- Dixon, JK, "Pattern recognition with partly missing data", IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, pp. 617-621, 1979, DOI: 10.1109/TSMC.1979.4310090
- Stekhoven DJ, Buhlmann, P, "MissForest-nonparametric missing value imputation for mixed-type data", Bioinformatics, Vol. 28, pp. 112-118. 2012, DOI: 10.1093/bioinformatics/btr597
- Van Buuren, S, Groothuis-Oudshoorn, K, "MICE: Multivariate imputation by chained equations in R", Journal of Statistical Software, Vol. 45, pp. 1-67, 2011, DOI: 10.18637/jss.v045.i03
- Rubin, DB, "Multiple imputations in sample surveys-a phenomenological Bayesian approach to nonresponse", In proceedings of the survey research methods section of the American Statistical Association, Vol. 1, pp. 20-28, 1978
- Little RJA, "A Test of Missing Completely at Random for Multivariate Data with Missing Values", Journal of the American Statistical Association, Vol. 83, pp. 1198-1202, 1988, DOI:10.1080/01621459
- LeCun Y, Bengio Y, Hinton GE, "Deep learning", Nature, Vol. 521, pp. 436-444. 2015, DOI:10.1038/nature14539
- Ko KH, "Study on Difference of Wordvectors Analysis Induced by Text Preprocessing for Deep Learning", The Journal of the Convergence on Culture Technology, Vol. 8, No. 5, pp. 489-495, 2022, DOI: 10.17703/JCCT.2022.8.5.489
- Zhai J, Zhang S, Chen J, He Q, "Autoencoder and Its Various Variants", 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 2018, pp. 415-419, DOI:10.1109/SMC.2018.00080.
- Bank D, Koenigstein N, Giryes, R. "Autoencoders", available from arXiv:2003.05991v2, 2021, DOI:10.48550/arXiv.2003.05991
- Pereira RC, Santos MS, Rodrigues PP, Abreu PH. "Reviewing autoencoders for missing data imputation: Technical trends, applications and outcomes", Journal of Artificial Intelligence Research, Vol. 69, pp. 1255-1285, 2020, DOI:10.1613/jair.1.12312
- Gondara L, Wang K, "MIDA : Multiple imputation using denoising autoencoders", Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 260-272, 2018, DOI: 10.48550/arXiv.1705.02737
- Park JG, Choi ES, Kang MS, Jun YG, "Dropout Genetic Algorithm Analysis for Deep Learning Generalization Error Minimization", International Journal of Advanced Culture Technology, Vol. 5, No. 2, pp. 74-81, 2017, DOI: 10.17703/IJACT.2017.5.2.74
- 공공데이터포털. https://www.data.go.kr/