DOI QR코드

DOI QR Code

Analysis of Available Time of Cloud Seeding in South Korea Using Radar and Rain Gauge Data During 2017-2022

2017-2022년 남한지역 레이더 및 지상 강수 자료를 이용한 인공강우 항공 실험 가능시간 분석

  • Yonghun Ro (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Ki-Ho Chang (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Yun-kyu Lim (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Woonseon Jung (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Jinwon Kim (Climate Change Research Team, National Institute of Meteorological Sciences) ;
  • Yong Hee Lee (Research Applications Department, National Institute of Meteorological Sciences)
  • 노용훈 (국립기상과학원 기상응용연구부) ;
  • 장기호 (국립기상과학원 기상응용연구부) ;
  • 임윤규 (국립기상과학원 기상응용연구부) ;
  • 정운선 (국립기상과학원 기상응용연구부) ;
  • 김진원 (국립기상과학원 기후변화예측연구팀) ;
  • 이용희 (국립기상과학원 기상응용연구부)
  • Received : 2023.11.08
  • Accepted : 2024.01.03
  • Published : 2024.01.31

Abstract

The possible experimental time for cloud seeding was analyzed in South Korea. Rain gauge and radar precipitation data collected from September 2017 to August 2022 in from the three main target stations of cloud seeding experimentation (Daegwallyeong, Seoul, and Boryeong) were analyzed. In this study, the assumption that rainfall and cloud enhancement originating from the atmospheric updraft is a necessary condition for the cloud seeding experiment was applied. First, monthly and seasonal means of the precipitation duration and frequency were analyzed and cloud seeding experiments performed in the past were also reanalyzed. Results of analysis indicated that the experiments were possible during a monthly average of 7,025 minutes (117 times) in Daegwallyeong, 4,849 minutes (81 times) in Seoul, and 5,558 minutes (93 times) in Boryeong, if experimental limitations such as the insufficient availability of aircraft is not considered. The seasonal average results showed that the possible experimental time is the highest in summer at all three stations, which seems to be owing to the highest precipitable water in this period. Using the radar-converted precipitation data, the cloud seeding experiments were shown to be possible for 970-1,406 hours (11-16%) per year in these three regions in South Korea. This long possible experimental time suggests that longer duration, more than the previous period of 1 hour, cloud seeding experiments are available, and can contribute to achieving a large accumulated amount of enhanced rainfall.

Keywords

Acknowledgement

본 연구는 기상청 국립기상과학원 "기상조절 및 구름 물리 연구(KMA2018-00224)"의 지원을 받았습니다.

References

  1. Adams, B. J., Papa, F., 2000, Urban storm water management planning with analytical probabilistic models, John Wiley & Sons Inc.
  2. Ajin, R. S., Loghin, A. M., Jacob, M. K., Vinod, P. G., Krishnamurthy, R. R., 2016, The risk assessment study of potential forest fire in Idukki Wildlife Sanctuary using RS and GIS techniques, Int. J. Adv. Earth Sci. Eng., 5(1), 308-318. https://doi.org/10.23953/cloud.ijaese.201
  3. Al Hosari, T., Al Mandous, A., Wehbe, Y., Shalaby, A., Al Shamsi, N. A., Al Naqbi, H., Yazeedi, O. A., Mazroui, A. A., Farrah, S., 2021, The UAE cloud seeding program: A statistical and physical evaluation, Atmosphere, 12, 1013.
  4. Baek, J., Kim, J., Park, J., Lim, K., Shin, H., 2022, A Study on the rainfall management target considering inter-event time definition (IETD), J. Korea Water Resour. Assoc., 55(8), 603-611.
  5. Bruintjes, R. T., 1999, A Review of cloud seeding experiments to enhance precipitation and some new prospects, Bull. Am. Meteorol. Soc., 80(5), 805-820. https://doi.org/10.1175/1520-0477(1999)080<0805:AROCSE>2.0.CO;2
  6. Chang, K., Jeong, J., Cha, Y., Yang, H., Choi, Y., Kwon, W., 2011, Characteristics of recent precipitation trends and drought years, J. Korean Soc. Hazard Mitig., 11(1), 54-64.
  7. Essien, A. E., Guo, Y., Dickson-Anderson, S. E., 2023, Extensive rainfall data analysis: event separation from continuous record, fitting of theoretical distributions, and event-based trend detection, Environ. Sci.: Adv., 2(5), 695-708. https://doi.org/10.1039/D2VA00294A
  8. Han, D. G., Kim, D. H., Kim, J. W., Jung, J. W., Lee, J. J., Kim, H. S., 2019, Estimation of mega flood using mega rainfall scenario, J. Wetlands Res., 21(S-1), 90-97.
  9. Howard, C. D., 1976, Theory of storage and treatment-plant overflows, J. Environ. Eng. Division, 102(4), 709-722. https://doi.org/10.1061/JEEGAV.0000508
  10. James, W., 1994, Current practices in modelling the management of storm water impacts, Lewis Publishers, Boca Raton.
  11. Javanmard, S., BodaghJamali, J., Noorian, A. M., 2007, Preliminary results of site selection study for cloud seeding in order for precipitation enhancement in IR of Iran, J. Wea. Mod., 39(1), 87-95.
  12. Joo, J., Lee, J., Kim, J. H., Jun, H., Jo, D., 2013, Inter-event time definition setting procedure for urban drainage systems, Water, 6(1), 45-58. https://doi.org/10.3390/w6010045
  13. Jung, W., Chang, K. H., Cha, J. W., Ku, J. M., Lee, C., 2022, Estimation of available days for a cloud seeding experiment in Korea, J. Environ. Sci. Int., 31(2), 117-129. https://doi.org/10.5322/JESI.2022.31.2.117
  14. KFS, 2023, 2022 forest fire statistics, Korea Forest Service.
  15. Kong, M., Wang, G., Wu, Y., Liu, G., Gu, Y., Wu, W., 2021, A Nationwide analysis of water scarcity and cloud seeding demand levels from analyzing water utilization data, agricultural drought maps, and local conditions in China mainland, Ear. Space Sci., 8(6), 1-18. https://doi.org/10.1029/2020EA001477
  16. Kyoung, M. S., Kim, H. S., Sivakumar, B., Singh, V. P., Ahn, K. S., 2011, Dynamic characteristics of monthly rainfall in the Korean Peninsula under climate change, Stochastic Envir. Res. Risk Assess., 25, 613-625. https://doi.org/10.1007/s00477-010-0425-9
  17. Lachhab, R., 2023, Economic impacts of weather modification on water resources and drought: evidence from California, Research in Agricultural & Applied Economics.
  18. Lee, J. W., Jung, G. H., 2017, Estimation of interevent time definition using in urban areas, J. Korean Soc. Hazard Mitig., 17(4), 287-294. https://doi.org/10.9798/KOSHAM.2017.17.4.287
  19. Mishra, V., Tiwari, A. D., Aadhar, S., Shah, R., Xiao, M., Pai, D. S., Lettenmaier, D., 2019, Drought and famine in India, 1870-2016, Geophys. Res. Lett., 46(4), 2075-2083. https://doi.org/10.1029/2018GL081477
  20. MLTMA, 2011, Improvement and supplementation of probability rainfall, Ministry of Land, Transport and Maritime Affairs.
  21. NDIAC, 2018, 2013-2018 sustained drought analysis and assessment report, National Drought Information-Analysis Center.
  22. Niemczynowicz, J., 1999, Urban hydrology and water management-present and future challenges, Urban Water, 1(1), 1-14. https://doi.org/10.1016/S1462-0758(99)00009-6
  23. NIER, 2022, 2021 Air quality statistics, National Institute of Environmental Research.
  24. NIMS, 2022, Research on weather modification and cloud physics, National Institute of Meteorological Sciences.
  25. Noor, A., Shafi, M. M., 2023, Impact of climate change on the confined aquifers resources and factors responsible for decline and vulnerability of groundwater in district Karak, Sarhad J. Agri., 39(2), 545-551. https://doi.org/10.17582/journal.sja/2023/39.2.545.551
  26. Pathak, A. A., Dodamani, B. M., 2019, Trend analysis of groundwater levels and assessment of regional groundwater drought: Ghataprabha river basin, India, Nat. Resour. Res., 28, 631-643. https://doi.org/10.1007/s11053-018-9417-0
  27. Pokharel, B., Geerts, B., Jing, X., Friedrich, K., Ikeda, K., Rasmussen, R., 2017, A Multi-sensor study of the impact of ground-based glaciogenic seeding on clouds and precipitation over mountains in Wyoming. Part II: Seeding impact analysis, Atmospher. Res., 183, 42-57. https://doi.org/10.1016/j.atmosres.2016.08.018
  28. Rasmussen, R. M., Tessendorf, S. A., Xue, L., Weeks, C., Ikeda, K., Landolt, S., Breed, D., Deshler, T., Lawrence, B., 2018, Evaluation of the Wyoming Weather Modification Pilot Project (WWMPP) using two approaches: Traditional statistics and ensemble modeling, J. Appl. Meteorol. Climatol., 57, 2639-2660. https://doi.org/10.1175/JAMC-D-17-0335.1
  29. Rauber, R. M., Geerts, B., Xue, L., French, J., Friedrich, K., Rasmussen, R. M., Tessendorf, S. A., Blestrud, D. R., Kumkel, M. L., Parkinson, S., 2019, Wintertime orographic cloud seeding-A review, J. Appl. Meteorol. Climatol., 58(10), 2117-2140. https://doi.org/10.1175/JAMC-D-18-0341.1
  30. Ro, Y., Chang, K. H., Chae, S., Lim, Y. K., Ku, J. M., Jung, W., 2023, Estimation of the total amount of enhanced rainfall for a cloud seeding experiment: case studies of preventing forest fire, drought, and dust, Adv. Meteorol., 2023, 1-18. https://doi.org/10.1155/2023/5478666
  31. Ro, Y., Yoo, C., 2020, Consideration of rainfall intermittency and log-normality on the merging of radar and the rain gauge rain rate, J. Hydrol., 589, 125178.
  32. Rosenfeld, D., Farbstein, H., 1992, Possible influence of desert dust on seedability of clouds in Israel, J. Appl. Meteorol. Climatol., 31(7), 722-731. https://doi.org/10.1175/1520-0450(1992)031<0722:PIODDO>2.0.CO;2
  33. Silverman, B. A., Sukarnjanaset, W., 2000, Results of the Thailand warm-cloud hygroscopic particle seeding experiment, J. Appl. Meteorol. Climatol., 39(7), 1160-1175. https://doi.org/10.1175/1520-0450(2000)039<1160:ROTTWC>2.0.CO;2
  34. Somashekar, R. K., Ravikumar, P., Mohan Kumar, C. N., Prakash, K. L., Nagaraja, B. C., 2009, Burnt area mapping of Bandipur National Park, India using IRS 1C/1D LISS III data, J. Indian Soc. Remote Sens., 37, 37-50. https://doi.org/10.1007/s12524-009-0010-1
  35. Tessendorf, S. A., Bruintjes, R. T., Weeks, C., Wilson, J. W., Knight, C. A., Roberts, R. D., Peter, J. R., Collis, S., Buseck, P. R., Freney, E., Dixon, M., Pocernich, M., Ikeda, K., Axisa, D., Nelson, E., May, P. T., Richter, H., Piketh, S., Burger, R. P., Wilson, L., Siems, S. T., Manton, M., Stone, R. C., Pepler, A., Collins, D.R., Bringi, V. N., Thurai, M., Turner, L., McRae, D., 2012, The Queensland cloud seeding research program, Bull. Am. Meteorol. Soc., 93(1), 75-90. https://doi.org/10.1175/BAMS-D-11-00060.1
  36. Yoo, C., Park, C., Jun, C., 2016, Evaluation of the concept of critical rainfall duration by bivariate frequency analysis of annual maximum independent rainfall event series in Seoul, Korea, J. Hydrol. Eng., 21(1), 05015016.