DOI QR코드

DOI QR Code

Assessing Temperature and Wind Speed Dynamics by Building Cluster Type: Simulation of Cold Air Spread Along the Han River During a Heatwave in the Heukseok-dong Area of Dongjak-gu, Seoul

폭염기 한강변 저온공기의 확산에 따른 건축물 군집유형별 온도 및 풍속 변화 시뮬레이션 연구 - 서울시 동작구 흑석동 일대를 대상으로 -

  • Bae, Woong-Kyoo (Dept. of Urban Design and Studies, Chung-Ang University) ;
  • Lee, Jae-Jun (Dept. of Urban Engineering, Chung-Ang University)
  • 배웅규 (중앙대 사회기반시스템공학부 도시시스템공학전공) ;
  • 이재준 (중앙대 도시공학전공)
  • Received : 2023.09.11
  • Accepted : 2023.12.12
  • Published : 2024.01.30

Abstract

In response to rising heat waves and the urban heat island effect, there's a need to enhance cooler air circulation from green and water spaces in urban areas. To address thermal issues, understanding the diffusion of cold air in urban water spaces and its impact on wind speed and temperature by building cluster type is crucial. This study assesses cold air diffusion in the Hangang River during a heatwave and conducts a comparative analysis of temperature and wind speed changes by building cluster type. Findings show that overpasses and apartment buildings create wind pathways, reducing water space temperatures. However, outside water spaces, temperatures rise while wind speeds decrease. This study quantifies the cooling effect up to 1,000 meters from urban water spaces, ranging from 0.05% to 1.12%. Further analysis revealed that topographic changes contribute to 84% of total temperature change, while building-related changes contribute 16%. Topographic changes tended to decrease wind speed, while building-related changes increased it. A comparative analysis of temperature and wind speed impacts along the Hangang River in urban areas shows low-rise residential areas have the highest temperatures compared to high-rise residential and commercial areas. Conversely, high-rise residential areas exhibited the highest wind speeds, followed by low-rise residential and commercial areas. This study's significance lies in using ENVI-met simulation and ArcGIS to precisely quantify cold air dispersion in urban water spaces and conduct comparative analyses of temperature and wind speed variations across different building cluster types due to cold air diffusion.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NO.2023R1A2C1004123)

References

  1. Adams, L. W., & Dove, L. E. (1989). Wildlife reserves and corridors in the urban environment, A guide to ecological landscape planning and resource conservation. National Institute for Urban Wildlife, Columbia, MD(USA). 1989.
  2. Almaaitah, T., Appleby, M., Rosenblat, H., Drake, J., & Joksimovic, D. (2021). The potential of Blue-Green infrastructure as a climate change adaptation strategy: a systematic literature review. Blue-Green Systems, 3(1), 223-248. https://doi.org/10.2166/bgs.2021.016
  3. Ampatzidis, P., & Kershaw, T. (2020). A review of the impact of blue space on the urban microclimate, Science of The Total Environment, 730, 139068.
  4. Aram, F., Garcia, E. H., Solgi, E., & Mansournia, S. (2019). Urban green space cooling effect in cities. Heliyon, 5(4).
  5. Avdan, U., & Jovanovska, G. (2016). Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of Sensors, 2016, 1-8. https://doi.org/10.1155/2016/1480307
  6. Cai, Z., Guldmann, J. M., Tang, Y., & Han, G. (2022). Does city-water layout matter? Comparing the cooling effects of water bodies across 34 Chinese megacities, Journal of Environmental Management, 324, 116263.
  7. Change, P. C. (2018). Global warming of 1.5℃. World Meteorological Organization: Geneva, Switzerland.
  8. Chapman, S., Watson, J. E., Salazar, A., Thatcher, M., & McAlpine, C. A. (2017). The impact of urbanization and climate change on urban temperatures: a systematic review. Landscape Ecology, 32, 1921-1935. https://doi.org/10.1007/s10980-017-0561-4
  9. Cho, J. H., Yim, S. R., Lee, K. S., & Han, S. E. (2012). A Study on the Evaluation of Wind Environment and Analytical Method Using CFD Analysis. Journal of The Architectural Institute of Korea Structure & Construction, 28(7), 99-106.
  10. Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R., Paruelo, J., Raskin, R., Sutton, P., & Van Den Belt, M. (1997). The value of the world's ecosystem services and natural capital. Nature, 387(6630), 253-260. https://doi.org/10.1038/387253a0
  11. Fellenberg, G. (1991). Lebensraum Stadt, Verlag der Fachvereine Zurich, 55-56.
  12. Hathway, E. A., & Sharples, S. (2012). The interaction of rivers and urban form in mitigating the Urban Heat Island effect: A UK case study. Building and Environment, 58, 14-22. https://doi.org/10.1016/j.buildenv.2012.06.013
  13. Jacobs, C., Klok, L., Bruse, M., Cortesao, J., Lenzholzer, S., & Kluck, J. (2020). Are urban water bodies really cooling?, Urban Climate, 32, 100607.
  14. Je, M. H., & Jung, S. H. (2018). Urban Heat Island Intensity Analysis by Landuse Types, Journal of The Korea Contents Association, 18(11), 1-12.
  15. Kim, H. S., Kim, H. K., & Lee, J. S. (2020). The Effects of Changes in the Physical Layout of Apartment Complexes on theThermal Comfort Index in Urban Area - Focusing on Apgujeong Apartment Complex, Journal of The Korean Institute of Culture Architecture, 72, 161-172.
  16. Kim, D., Cha, J. G., & Jung, E. H. (2014). A study on the impact of urban river refurbishment to the thermal environment of surrounding residential area, Journal of Environmental Protection, 5(05), 454.
  17. Kim, J. S., & Kang, J. E. (2022). An Analysis of Thermal Environment Change According to Urban Development Project Using ENVI-met Model: Focused on ChangWon, Journal of Climate Change Research, 13(5), 659-677. https://doi.org/10.15531/KSCCR.2022.13.5.659
  18. Kim, K. T., & Song, J. M. (2015). The Effect of the Cheonggyecheon Restoration Project on the Mitigation of Urban Heat Island, Journal of Korea Planning Association, 50(4), 139-154.
  19. Korean Meteorological Administration. (2023, March). Open MET Data Portal. https://data.kma.go.kr
  20. Lee, W. C., & Park, C. D. (2014). A Study of Evaluation System about Hydrophile Property of Metropolis Waterside, Journal of The Residential Environment Institute of Korea, 12(3), 185-195.
  21. Lee, W. G., & Lim, T. S. (2022). Analysis of Wind Environment by the Layout of New Residential Buildings by using CFD Simulation, Journal of The Korean Society of Living Environmental System, 29(6), 688-693. https://doi.org/10.21086/ksles.2022.12.29.6.688
  22. Lin, Y., Wang, Z., Jim, C. Y., Li, J., Deng, J., & Liu, J. (2020). Water as an urban heat sink: Blue infrastructure alleviates urban heat island effect in mega-city agglomeration. Journal of Cleaner Production, 262, 121411.
  23. Manteghi, G., Lamit, D. H., & Aflaki, A. (2016). Envi-Met simulation on cooling effect of Melaka River. Eajournals. Org, 4(2), 7-15.
  24. Oh, K. S., & Hong, J. J. (2005). The Relationship between Urban Spatial Elements and the Urban Heat Island Effect, Journal of The Urban Design Institute of Korea Urban Design, 6(1), 47-63.
  25. Park, C. Y., Lee, D. K., Asawa, T., Murakami, A., Kim, H. G., Lee, M. K., & Lee, H. S. (2019). Influence of urban form on the cooling effect of a small urban river, Landscape and Urban Planning, 183, 26-35. https://doi.org/10.1016/j.landurbplan.2018.10.022
  26. Park, S. W., Hwang, J. W., Kim, H. E., Lee, Y. J., Kim, J. H., & Ahn. Y. J. (2023). Results of the 2022 Heat-related Illness Surveillance, Public Health Weekly Report 2023, 16, 241-252.
  27. Rodriguez Algeciras, J. A., Coch, H., De la Paz Perez, G., Chaos Yeras, M., & Matzarakis, A. (2016). Human thermal comfort conditions and urban planning in hot-humid climates-The case of Cuba. International, journal of biometeorology, 60, 1151-1164. https://doi.org/10.1007/s00484-015-1109-4
  28. Smith, N., Georgiou, M., King, A. C., Tieges, Z., Webb, S., & Chastin, S. (2021). Urban blue spaces and human health: A systematic review and meta-analysis of quantitative studies, Cities, 119, 103413.
  29. Volker, S., Baumeister, H., Classen, T., Hornberg, C., & Kistemann, T. (2013). Evidence For The Temperature-Mitigating Capacity Of Urban Blue Space - A Health Geographic Perspective, Erdkunde, 67(4), 355-371. https://doi.org/10.3112/erdkunde.2013.04.05
  30. Wilson, J. S., Clay, M., Martin, E., Stuckey, D., & Vedder-Risch, K. (2003). Evaluating environmental influences of zoning in urban ecosystems with remote sensing, Remote Sensing of Environment, 86(3), 303-321. https://doi.org/10.1016/S0034-4257(03)00084-1
  31. Wu, Z., & Zhang, Y. (2019). Water bodies' cooling effects on urban land daytime surface temperature: Ecosystem service reducing heat island effect, Sustainability, 11(3), 787.
  32. Zhang, Y., Murray, A. T., & Turner Ii, B. L. (2017). Optimizing green space locations to reduce daytime and nighttime urban heat island effects in Phoenix, Arizona. Landscape and Urban Planning, 165, 162-171. https://doi.org/10.1016/j.landurbplan.2017.04.009
  33. Zhou, S. Z., & Shu, J. (1994). Urban Climatology, Beijing: China Meteorological, 244-345.