DOI QR코드

DOI QR Code

Time varying LQR-based optimal control of geometrically exact Reissner's beam model

  • Suljo Ljukovac (University of Technology Compiegne-Alliance Sorbonne University, Laboratoire Roberval, Centre de Recherche Royallieu) ;
  • Adnan Ibrahimbegovic (University of Technology Compiegne-Alliance Sorbonne University, Laboratoire Roberval, Centre de Recherche Royallieu) ;
  • Maida Cohodar-Husic (Faculty of Mechanical Engineering, University of Sarajevo)
  • 투고 : 2023.11.14
  • 심사 : 2023.11.21
  • 발행 : 2024.02.25

초록

In this work, we propose combining an advanced optimal control algorithm with a geometrically exact beam model. For simplicity, the 2D Reissner beam model is chosen to represent large displacements and rotations. The difficulty pertains to the nonlinear nature of beam kinematics affecting the tangent stiffness matrix, making it non-constant, which compromises direct use of optimal control methods for linear problems. Thus, we seek to accommodate a time varying control using linear-quadratic regulator (LQR) algorithm with the proposed geometrically nonlinear beam model. We provide a detailed theoretical formulation and its numerical implementation in a variational format form. Several illustrative numerical examples are provided to confirm an excellent performance of the proposed methodology.

키워드

과제정보

This work was supported by the French Research Agency, ANR - Project MS3C and by IUF-Institut Universitaire de France (for AI) and a scholarship from the French Ministry MEAE (for SLj). All the support is gratefully acknowledged.

참고문헌

  1. Chen, G., Rui, X., Abbas, L.K., Wang, G., Yang, F. and Zhu, W. (2018), "A novel method for the dynamic modelling of Stewart parallel mechanism", Mech. Mach. Theory, 126, 397-412. https://doi.org/10.1016/j.mechmachtheory.2018.04.024.
  2. Das, S., Pan, I., Halder, K., Das, S. and Gupta, A. (2013), "LQR based improved discrete PID controller design via optimum selection of weighting matrices using fractional order integral performance index", Appl. Math. Model., 37, 4253-4268. https://doi.org/10.1016/j.apm.2012.09.022.
  3. Glad, T. and Ljung, L. (2000), Control Theory, CRC Press, London, UK.
  4. He, J.B., Wang, Q.G. and Lee, T.H. (2000), "PI/PID controller tuning via LQR approach", Chem. Eng. Sci., 55, 2429-2439. https://doi.org/10.1016/S0009-2509(99)00512-6.
  5. Hernandez, E., Kalise, D. and Otarola, E. (2011), "A locking-free scheme for the LQR control of a Timoshenko beam", J. Comput. Appl. Math., 235, 1383-1393. https://doi.org/10.1016/j.cam.2010.08.025.
  6. Ibrahimbegovic, A. and Boujelben, A. (2018), "Long-term simulation of wind turbine structure for distributed loading describing long-term wind loads for preliminary design", Couple. Syst. Mech., 7(2), 233-254. https://doi.org/10.12989/csm.2018.7.2.233.
  7. Ibrahimbegovic, A. and Mejia-Nava, R.A. (2023), Structural Engineering, Springer Cham, Switzerland.
  8. Ibrahimbegovic, A., Frey, F. and Kozar, I. (1995), "Computational aspects of vector-like parametrization of three-dimensional finite rotations", Int. J. Numer. Meth. Eng., 38, 3653-3673. https://doi.org/10.1002/nme.1620382107.
  9. Ibrahimbegovic, A., Knopf-Lenoir, C.A. Kucerova, A. and Villon, P. (2004), "Optimal design and optimal control of structures undergoing finite rotations and elastic deformations", Int. J. Numer. Meth. Eng., 61(14), 2428-2460. https://doi.org/10.1002/nme.1150.
  10. Ibrahimbegovic, A., Mejia-Nava, R.A. and Ljukovac, S. (2023), "Reduced model for fracture of geometrically exact planar beam: Non-local variational formulation, ED-FEM approximation and operator split solution", Int. J. Numer. Meth. Eng., e7369. https://doi.org/10.1002/nme.7369.
  11. Kirk, D.E. (2004), Optimal Control Theory: An Introduction, Dover Publications, New York, USA.
  12. Lewis, F.L., Vrabie, D.L. and Syrmos, V.L. (2012), Optimal Control, John Wiley & Sons, New Jersey, USA.
  13. Marsden, J.E. and Hughes, T.J.R. (1983) Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs, USA.
  14. Neto, M.A., Ambrosio, J.A.C., Roseiro, L.M., Amaro, A. and Vasques, C.M.A. (2013), "Active vibration control of spatial flexible multibody systems", Multib. Syst. Dyn., 30, 13-35. https://doi.org/10.1007/s11044-013-9341-3.
  15. Rafiee, M., Nitzsche, F. and Labrosse, M. (2017), "Dynamics, vibration and control of rotating composite beams and blades: A critical review", Thin Wall. Struct., 119, 795-819. https://doi.org/10.1016/j.tws.2017.06.018.
  16. Reissner, E. (1972), "On one-dimensional finite-strain beam theory: The plane problem", J. Appl. Math. Phys., (ZAMP), 23, 795-804. https://doi.org/10.1007/BF01602645.
  17. Schindele, D. and Aschemann, H. (2014), "Adaptive LQR-Control design and friction compensation for flexible high-speed rack feeders", J. Comput. Nonlin. Dyn., 9, 011011. https://doi.org/10.1115/1.4025351.
  18. Song, J., Chen, W., Guo, S. and Yan, D. (2021), "LQR control on multimode vortex-induced vibration of flexible riser undergoing shear flow", Marine Struct., 79, 103047. https://doi.org/10.1016/j.marstruc.2021.103047.
  19. Taylor, R.L. (2014), "Feap-finite element analysis program", University of California, Berkeley, USA.
  20. Trelat, E. (2005), Controle Optimal: Theorie & Applications, Vuibert, France.
  21. Trevisani, A. (2003), "Feedback control of flexible four-bar linkages: A numerical and experimental investigation", J. Sound Vib., 268, 947-970. https://doi.org/10.1016/S0022-460X(03)00376-6.
  22. Vasques, C.M.A. and Dias Rodrigues, J. (2006), "Active vibration control of smart piezoelectric beams: Comparison of classical and optimal feedback control strategies", Comput. Struct., 84, 1402-1414. https://doi.org/10.1016/j.compstruc.2006.01.026.
  23. Zhou, P., Wang, F.Y., Chen, W. and Lever, P. (2001), "Optimal construction and control of flexible manipulators: a case study based on LQR output feedback", Mechatron., 11, 59-77. https://doi.org/10.1016/S0957-4158(00)00004-0.