References
- Abdelhak, Z., Hadji, L., Daouadji, T.H. and Bedia, E.A. (2015), "Thermal buckling of functionally graded plates using a n-order four variable refined theory", Adv. Mater. Res, 4(1), 31-44. https://doi.org/10.12989/amr.2015.4.1.31.
- Aliaga, J.W. and Reddy, J.N. (2004), "Nonlinear thermoelastic analysis of functionally graded plates using the third-order shear deformation theory", Int. J. Comput. Eng. Sci., 5, 753-779. https://doi.org/10.1142/S1465876304002666.
- Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35, 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
- Amoozgar, M. and Gelman, L. (2022), "Vibration analysis of rotating porous functionally graded material beams using formulation", J. Vib. Control, 28(22), 3195-3206. https://doi.org/10.1177/10775463211027883.
- Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007.
- Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
- Benadouda, M., Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2017), "An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities", Earthq. Struct., 13(3), 255-265. https://doi.org/10.12989/eas.2017.13.3.255.
- Bennai, R., Fourn, H., Ait Atmane, H., Tounsi, A. and Bessaim, A. (2019), "Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory", Wind Struct., 28(1), 49-62. https://doi.org/10.12989/was.2019.28.1.049.
- Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Adda Bedia, E.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467.
- Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108-109, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025.
- Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT", Aerosp. Sci. Technol., 77, 419-428. https://doi.org/10.1016/j.ast.2018.03.020.
- Dahmane, M., Benadouda, M., Fellahc, A., Saimi, A., Hassen, A.A. and Bensaid, I. (2023), "Porosities-dependent wave propagation in bidirectional functionally graded cantilever beam with higher-order shear model", Adv. Mater. Struct., 1-11. https://doi.org/10.1080/15376494.2023.2253546.
- Daouadji, T.H., Henni, A.H., Tounsi, A. and Bedia, E.A.A. (2013), "Elasticity solution of a cantilever functionally graded beam", Appl. Compos. Mater., 20, 1-15. https://doi.org/10.1007/s10443-011-9243-6.
- Ding, J.H., Huang, D.J. and Chen, W.Q. (2007), "Elasticity solutions for plane anisotropic functionally graded beams", Int. J. Solid. Struct., 44(1), 176-196. https://doi.org/10.1016/j.ijsolstr.2006.04.026.
- Eiadtrong, S., Wattanasakulpong, N. and Vo, T.P. (2023), "Thermal vibration of functionally graded porous beams with classical and non-classical boundary conditions using a modified Fourier method", Acta Mechanica, 234(2), 729-750. https://doi.org/10.1007/s00707-022-03401-5.
- Gokhan, A. (2022), "Free vibration analysis of a porous functionally graded beam using higher-order shear deformation theory", J. Struct. Eng. Appl. Mech., 5(4), 277-288. https://doi.org/10.31462/jseam.2022.04277288.
- Habib, E.S., El-Hadek, M.A. and El-Megharbel, A. (2019), "Stress analysis for cylinder made of FGM and subjected to thermo-mechanical loadings", Metal., 9(4), 1-14. https://doi.org/10.3390/met9010004.
- Hadji, L., Bernard, F. and Zouatnia, N. (2022), "Bending and free vibration analysis of Porous-Functionally-Graded (PFG) beams resting on elastic foundations", Fluid Dyn. Mater. Pr., 19(4), 1143-1155. https://doi.org/10.32604/fdmp.2022.022327.
- Hadji, L., Daouadji, T.H., Meziane, M.A.A., Tlidji, Y. and Bedia, E.A.A. (2016), "Analysis of functionally graded beam using a new first-order shear deformation theory", Struct. Eng. Mech., 57(2), 315-325. https://doi.org/10.12989/sem.2016.57.2.315.
- Hadji, L., Khelifa, Z. and Bedia, E.A.A. (2016), "A new higher order shear deformation model for functionally graded beams", KSCE J. Civil Eng., 20, 1835-1841. https://doi.org/10.1007/s12205-015-0252-0.
- Hassaine, N., Touat, N., Dahak, M., Fellah, A. and Saimi, A. (2022), "Study of crack's effect on the natural frequencies of bi-directional functionally graded beam", Mech. Bas. Des. Struct. Mach., 1-11. https://doi.org/10.1080/15397734.2022.2113408.
- Hoang Lan, T.T. (2020), "A combined strain element to functionally graded structures in thermal environment", Acta Polytechnica, 60(6), 528-539. https://doi.org/10.14311/AP.2020.60.0528.
- Houari, M.S.A., Tounsi, A. and Anwar, B.O. (2013), "Thermo-elastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 102-111. https://doi.org/10.1016/j.ijmecsci.2013.09.004.
- Koochaki, G.R. (2011), "Free vibration analysis of functionally graded beams", Int. J. Mech. Aerosp. Indus. Mechatron. Manuf. Eng., 5(2), 514-517.
- Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
- Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Exact solutions for free vibrations of functionally graded thick plates on elastic foundations", Mech. Adv. Mater. Struct., 16(8), 576-584. https://doi.org/10.1080/15376490903138888.
- Medjdoubi, B.A., Houari, M.S.A., Sadoun, M., Bessaim, A., Daikh, A.A., Belarbi, M.O., ... & Ghazwani, M.H. (2023), "On the effect of porosity on the shear correction factors of functionally graded porous beams", Couple. Syst. Mech., 12(3), 199-220. https://doi.org/10.12989/csm.2023.12.3.199.
- Mellal, F., Bennai, R., Avcar, M., Nebab, M. and Atmane, H.A. (2023), "On the vibration and buckling behaviors of porous FG beams resting on variable elastic foundation utilizing higher-order shear deformation theory", Acta Mechanica, 234(9), 3955-3977. https://doi.org/10.1007/s00707-023-03603-5.
- Muller, E., Drasar, C., Schilz, J. and Kaysser, W.A. (2003), "Functionally graded materials for sensor and energy applications", Mater. Sci. Eng. A, 362(1-2), 17-39. https://doi.org/10.1016/S0921-5093(03)00581-1.
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207.
- Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21, 593-626. https://doi.org/10.1080/01495739808956165.
- Saffari, P.R., Thongchom, C., Jearsiripongkul, T., Saffari, P.R., Keawsawasvong, S. and Kongwat, S. (2023), "Porosity-dependent wave propagation in multi-directional functionally graded nano-plate with nonlinear temperature-dependent characteristics on Kerr-type substrate", Int. J. Thermofluid., 20, 1-17. https://doi.org/10.1016/j.ijft.2023.100408.
- Saimi, A., Bensaid, I. and Fellah, A. (2023), "Effect of crack presence on the dynamic and buckling responses of bidirectional functionally graded beams based on quasi-3D beam model and differential quadrature finiteelement method", Arch. Appl. Mech., 93, 3131-3151. https://doi.org/10.1007/s00419-023-02429-w.
- Sayyad, A.S. and Ghugal, Y.M. (2017), "A unified shear deformation theory for the bending of isotropic, functionally graded, laminated and sandwich beams and plates", Int. J. Appl. Mech., 9(1), 1-36. https://doi.org/10.1142/S1758825117500077.
- Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
- Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015.
- Slimane, S.A., Slimane, A., Guelaili, A., Boudjemai, A., Kebdani, S., Smahat A. and Dahmane, M. (2022). Hypervelocity impact on honeycomb structure reinforced with bi-layer ceramic/aluminum facesheets used for spacecraft shielding", Mech. Adv. Mater. Struct., 29(25), 4487-4505. https://doi.org/10.1080/15376494.2021.1931991.
- Sura, K.A.A. and Ahmad, R.N. (2023), "Finite element analysis for the static response of functionally graded porous sandwich beams", Int. J. Eng. Technol.-IJET, 8(1), 13-20. https://doi.org/10.19072/ijet.1161612.
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
- Wattanasakulpong, N. and Eiadtrong S. (2023), "transient responses of sandwich plates with a functionally graded porous core: Jacobi-Ritz method", Int. J. Struct. Stab. Dyn., 23(4), 2350039. https://doi.org/10.1142/S0219455423500396.
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
- Zhong, Z. and Yu, T. (2007), "Analytical solution of a cantilever functionally graded beam", Compos. Sci. Technol., 67(3-4), 481-488. https://doi.org/10.1016/j.compscitech.2006.08.023.