DOI QR코드

DOI QR Code

Research on construction simulation technology of civil building structure engineering based on artificial intelligence

  • Zhongkuo Zhang (School of Civil Engineering, Yancheng Institute of Technology) ;
  • Jie Ren (School of Architecture, Inner Mongolia University of Technology)
  • 투고 : 2022.12.04
  • 심사 : 2023.11.30
  • 발행 : 2024.01.25

초록

Nanotechnology is the latest technology developed by humanity, trying to use the molecular properties of materials found in nature to create devices that solve the problems plaguing humanity and their efficiency. Man is also trying to change the meaning of molecules to nano so that a body made up of these particles has all the properties of these particles. Nanotechnology is not a new field but a new approach in all areas. A new perspective in concrete technology has been created by the use of nanoparticles in recent years. Adding silica nanoparticles to concrete mixes improves its properties and increases its strength. However, different results and reported mechanisms explain the behavior of nanoparticles in the mixture; Therefore, it took much work to generalize the results and predict the behavior of nano concretes. This article is about the construction simulation technology of civil engineering based on artificial intelligence, which deals with the effect of nanoparticles on improving concrete properties. This was demonstrated by analyzing laboratory samples in various mixture configurations and observing how silica nanoparticles affected their microstructure with scanning electron microscopy (SEM). Based on SEM measurements, silica nanoparticles have a powerful effect because of their specific surface area. Their increase and decrease must be sought in interacting with the filling and nucleation mechanism and the pozzolanic activity. Each of these mechanisms dominates at different ages of hydration and affects the microstructure and mechanical properties of concrete.

키워드

과제정보

This study was supported by Horizontal Project of Yancheng Institute of Technology (2022112110): Development and Research of Remote Monitoring System for HVAC Energy Consumption in High Rise Residential Buildings under the Background of Dual Carbon.

참고문헌

  1. Adams, J.A. (2001), "Multiagent systems: A modern approach to distributed artificial intelligence", AI Magazine, 22(2), 105. https://doi.org/10.1609/aimag.v22i2.1567. 
  2. Adeli, H. (2001), "Neural networks in civil engineering: 1989-2000", Comput. Aid. Civil Infrastruct. Eng., 16(2), 126-142. https://doi.org/10.1111/0885-9507.00219. 
  3. Aggarwal, P., Singh, R.P. and Aggarwal, Y. (2015), "Use of nanosilica in cement based materials-A review", Cogent Eng., 2(1), 1078018. https://doi.org/10.1080/23311916.2015.1078018. 
  4. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2016), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A, 123(1), 104. https://doi.org/10.1007/s00339-016-0712-5. 
  5. Bentz, D.P. (2014), "Activation energies of high-volume fly ash ternary blends: Hydration and setting", Cement Concr. Compos., 53, 214-223. https://doi.org/10.1016/j.cemconcomp.2014.06.018. 
  6. Bjornstrom, J., Martinelli, A., Matic, A., Borjesson, L. and Panas, I. (2004), "Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement", Chem. Phys. Lett., 392(1), 242-248. https://doi.org/10.1016/j.cplett.2004.05.071. 
  7. Cao, C., Wang, J., Kwok, D., Cui, F., Zhang, Z., Zhao, D., Li, M.J. and Zou, Q. (2022), "webTWAS: a resource for disease candidate susceptibility genes identified by transcriptome-wide association study", Nucleic Acids Res., 50(D1), D1123-D1130. https://doi.org/10.1093/nar/gkab957. 
  8. Cao, J., Bu, F., Wang, J., Bao, C., Chen, W. and Dai, K. (2023a), "Reconstruction of full-field dynamic responses for large-scale structures using optimal sensor placement", J. Sound Vib., 554, 117693. https://doi.org/10.1016/j.jsv.2023.117693. 
  9. Cao, J., Quek, S.T., Xiong, H. and Yang, Z. (2023b), "Comparison of constrained unscented and cubature kalman filters for nonlinear system parameter identification", J. Eng. Mech., 149(11), 04023088. https://doi.org/10.1061/JENMDT.EMENG-7091. 
  10. Cermak, J.E. (2003), "Wind-tunnel development and trends in applications to civil engineering", J. Wind Eng. Ind. Aerodyn., 91(3), 355-370. https://doi.org/10.1016/S0167-6105(02)00396-3. 
  11. Cheng, F., Niu, B., Xu, N. and Zhao, X. (2024), "Resilient distributed secure consensus control for uncertain networked agent systems under hybrid DoS attacks", Commun. Nonlinear Sci. Numer. Simul., 129, 107689. https://doi.org/10.1016/j.cnsns.2023.107689. 
  12. Cheng, Q., Ali, H.E. and Albaijan, I. (2023), "Optimization of the cross-section regarding the stability of nanostructures according to the dynamic analysis", Adv. Concr. Constr., 15(4), 215-228. https://doi.org/10.12989/acc.2023.15.4.215. 
  13. Cheung, J., Jeknavorian, A., Roberts, L. and Silva, D. (2011), "Impact of admixtures on the hydration kinetics of Portland cement", Cement Concr. Res., 41(12), 1289-1309. https://doi.org/10.1016/j.cemconres.2011.03.005. 
  14. Choolaei, M., Rashidi, A.M., Ardjmand, M., Yadegari, A. and Soltanian, H. (2012), "The effect of nanosilica on the physical properties of oil well cement", Mater. Sci. Eng. A, 538, 288-294. https://doi.org/10.1016/j.msea.2012.01.045. 
  15. Cui, W., Caracoglia, L., Zhao, L. and Ge, Y. (2023a), "Examination of occurrence probability of vortex-induced vibration of long-span bridge decks by Fokker-Planck-Kolmogorov equation", Struct. Safety, 105, 102369. https://doi.org/10.1016/j.strusafe.2023.102369. 
  16. Cui, W., Zhao, L. and Ge, Y. (2023b), "Wind-induced buffeting vibration of long-span bridge considering geometric and aerodynamic nonlinearity based on reduced-order modeling", J. Struct. Eng., 149(11), 04023160. https://doi.org/10.1061/JSENDH.STENG-11543. 
  17. Cui, W., Zhao, L., Ge, Y. and Xu, K. (2024), "A generalized van der Pol nonlinear model of vortex-induced vibrations of bridge decks with multistability", Nonlinear Dyn., 112(1), 259-272. https://doi.org/10.1007/s11071-023-09047-9. 
  18. Dai, Y., Jiang, Z., Chen, K.Y., Zuo, D., Ali, H.E. and Albaijan, I. (2023), "Geometry impact on the stability behavior of cylindrical microstructures: Computer modeling and application for small-scale sport structures", Steel Compos. Struct., 48(4), 443. https://doi.org/10.12989/scs.2023.48.4.443. 
  19. Dorn, T., Blask, O. and Stephan, D. (2022), "Acceleration of cement hydration - A review of the working mechanisms, effects on setting time, and compressive strength development of accelerating admixtures", Constr. Build. Mater., 323, 126554. https://doi.org/10.1016/j.conbuildmat.2022.126554. 
  20. Du, X., Li, Y., Huangfu, B., Si, Z., Huang, L., Wen, L. and Ke, M. (2023), "Modification mechanism of combined nanomaterials on high performance concrete and optimization of nanomaterial content", J. Build. Eng., 64, 105648. https://doi.org/10.1016/j.jobe.2022.105648. 
  21. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499. 
  22. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141. https://doi.org/10.12989/anr.2017.5.2.141. 
  23. Flood, I. and Kartam, N. (1994), "Neural networks in civil engineering. I: Principles and understanding", J. Comput. Civil Eng., 8(2), 131-148. https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(131). 
  24. Fu, L., Li, J., Yang, J., Liu, Y., He, C. and Chen, Y. (2023), "Purification process and reduction of heavy metals from industrial wastewater via synthesized nanoparticle for water supply in swimming/water sport", Adv. Nano Res., 15(5), 441-449. https://doi.org/10.12989/anr.2023.15.5.441. 
  25. Gawel, K., Wenner, S., Jafariesfad, N., Torsae ter, M. and Justnes, H. (2022), "Portland cement hydration in the vicinity of electrically polarized conductive surfaces", Cement Concr. Compos., 134, 104792. https://doi.org/10.1016/j.cemconcomp.2022.104792. 
  26. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527. 
  27. Ghadiri, M., Shafiei, N. and Alavi, H. (2017a), "Thermomechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770. 
  28. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016b), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A, 122(9), 837. https://doi.org/10.1007/s00339-016-0364-5. 
  29. Ghadiri, M., Shafiei, N. and Babaei, R. (2017b), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. https://doi.org/10.12989/scs.2017.25.2.197. 
  30. Ghadiri, M., Shafiei, N. and Hossein Alavi, S. (2017c), "Vibration analysis of a rotating nanoplate using nonlocal elasticity theory", J. Solid Mech., 9(2), 319-337. 
  31. Ghadiri, M., Shafiei, N., Salekdeh, S.H., Mottaghi, P. and Mirzaie, T. (2016c), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Brazil. Soc. Mech. Sci. Eng., 38(2), 335-343. https://doi.org/10.1007/s40430-015-0472-8. 
  32. Guan, J. (2019), "Artificial intelligence in healthcare and medicine: promises, ethical challenges and governance", Chinese Med. Sci. J., 34(2), 76-83. https://doi.org/10.24920/003611. 
  33. Hamet, P. and Tremblay, J. (2017), "Artificial intelligence in medicine", Metabolism, 69, S36-S40. https://doi.org/10.1016/j.metabol.2017.01.011. 
  34. Haruehansapong, S., Pulngern, T. and Chucheepsakul, S. (2014), "Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2", Constr. Build. Mater., 50, 471-477. https://doi.org/10.1016/j.conbuildmat.2013.10.002. 
  35. He, L. and Deng, Q. (2023), "Construction of sports engineering structures with high resistance to improve the quality of sports training", Struct. Eng. Mech., 86(2), 211-220. https://doi.org/10.12989/sem.2023.86.2.211. 
  36. He, S., Chai, J., Yang, Y., Cao, J., Qin, Y. and Xu, Z. (2023), "Effect of nano-reinforcing phase on the early hydration of cement paste: A review", Constr. Build. Mater., 367, 130147. https://doi.org/10.1016/j.conbuildmat.2022.130147. 
  37. Holzinger, A., Langs, G., Denk, H., Zatloukal, K. and Muller, H. (2019), "Causability and explainability of artificial intelligence in medicine", WIREs Data Min. Knowl. Discovery, 9(4), e1312. https://doi.org/10.1002/widm.1312. 
  38. Hou, P.K., Kawashima, S., Wang, K.J., Corr, D.J., Qian, J.S. and Shah, S.P. (2013), "Effects of colloidal nanosilica on rheological and mechanical properties of fly ash-cement mortar", Cement Concr. Compos., 35(1), 12-22. https://doi.org/10.1016/j.cemconcomp.2012.08.027. 
  39. Huang, H., Wang, Q., Li, X., Zhou, H., Yang, C.H. and Shen, X.D. (2018), "Sulfate adjustment for cement with triisopropanolamine: Mechanism of early strength enhancement", Constr. Build. Mater., 182, 516-522. https://doi.org/10.1016/j.conbuildmat.2018.06.123. 
  40. Huang, T., Mao, Z., Chang, L., Huang, X. and Cai, Z. (2023), "Study of impact resistance based on porcupine quills bionic thin-walled structure", J. Bionic Eng., 20(5), 1942-1955. https://doi.org/10.1007/s42235-023-00380-8. 
  41. Huang, X., Chang, L., Zhao, H. and Cai, Z. (2022), "Study on craniocerebral dynamics response and helmet protective performance under the blast waves", Mater. Des., 224, 111408. https://doi.org/10.1016/j.matdes.2022.111408. 
  42. Jia, S., Niu, X., Jia, F. and Mahmoudi, T. (2023), "Advantages and disadvantages of renewable energy-oil-environmental pollutionfrom the point of view of nanoscience", Adv. Concr. Constr., 16(1), 69-78. https://doi.org/10.12989/acc.2023.16.1.069. 
  43. Jin, H., Zhang, B. and Duan, X. (2023), "Impact of nanocomposite material to counter injury in physical sport in the tennis racket", Adv. Nano Res., 14(5), 435-442. https://doi.org/10.12989/anr.2023.14.5.435. 
  44. Kong, D., Du, X., Wei, S., Zhang, H., Yang, Y. and Shah, S.P. (2012), "Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials", Constr. Build. Mater., 37, 707-715. https://doi.org/10.1016/j.conbuildmat.2012.08.006. 
  45. Land, G. and Stephan, D. (2012), "The influence of nano-silica on the hydration of ordinary Portland cement", J. Mater. Sci., 47(2), 1011-1017. https://doi.org/10.1007/s10853-011-5881-1. 
  46. Larson, J.A., Johnson, M.H. and Bhayani, S.B. (2014), "Application of surgical safety standards to robotic surgery: five principles of ethics for nonmaleficence", J. Am. College Surgeon., 218(2), 290-293. https://doi.org/10.1016/j.jamcollsurg.2013.11.006. 
  47. Lau, J.S. and Li, Z. (2023), "Human functions in innovation and sustainable marketing", Adv. Concr. Constr., 16(2), 97. https://doi.org/10.12989/acc.2023.16.2.097. 
  48. Li, J., Bin, N., Guo, F., Gao, X., Chen, R., Yao, H. and Zhou, C. (2023a), "Analysis on the influence of sports equipment of fiber reinforced composite material on social sports development", Adv. Nano Res., 15(1), 49-57. https://doi.org/10.12989/anr.2023.15.1.049. 
  49. Li, Y., Li, M., Kong, X., Baniasadi, A., Shaker, A.H. and Ali, H.E. (2023b), "Psychological capital to foster employee creativity in nanotechnology companies: the mediating role of JS and CSR", Adv. Nano Res., 15(3), 277-283. https://doi.org/10.12989/anr.2023.15.3.277. 
  50. Liang, F., Wang, R., Pang, Q. and Hu, Z. (2023), "Design and optimization of press slider with steel-aluminum composite bionic sandwich structure for energy saving", J. Clean. Prod., 428, 139341. https://doi.org/10.1016/j.jclepro.2023.139341. 
  51. Liu, B., Zhou, H., Meng, H., Pan, G. and Li, D. (2023a), "Fresh properties, rheological behavior and structural evolution of cement pastes optimized using highly dispersed in situ controllably grown Nano-SiO2", Cement Concr. Compos., 135, 104828. https://doi.org/10.1016/j.cemconcomp.2022.104828. 
  52. Liu, J., Zhou, Y., Lu, J., Cai, R., Zhao, T., Chen, Y., Zhang, M., Lu, X. and Chen, Y. (2023b), "Injectable, tough and adhesive zwitterionic hydrogels for 3D-printed wearable strain sensors", Chem. Eng. J., 475, 146340. https://doi.org/10.1016/j.cej.2023.146340. 
  53. Liu, S., Niu, B., Karimi, H.R. and Zhao, X. (2024), "Self-triggered fixed-time bipartite fault-tolerant consensus for nonlinear multiagent systems with function constraints on states", Chaos Solitons Fractals, 178, 114367. https://doi.org/10.1016/j.chaos.2023.114367. 
  54. Lu, P., Chen, S. and Zheng, Y. (2012), "Artificial intelligence in civil engineering", Math. Probl. Eng., 145974. https://doi.org/10.1155/2012/145974. 
  55. Madelatparvar, M., Hosseini, M.S. and Zhang, C. (2023), "Polyurea micro-/nano-capsule applications in construction industry: A review", Nanotechnol. Rev., 12(1), 20220516. https://doi.org/10.1515/ntrev-2022-0516. 
  56. Minsky, M. (1961), "Steps toward Artificial Intelligence", Proceedings of the IRE. 49(1), 8-30. https://doi.org/10.1109/JRPROC.1961.287775. 
  57. Mousavi, S.M., Shafiei, N. and Dadvand, A. (2017), "Numerical simulation of subsonic turbulent flow over NACA0012 airfoil: evaluation of turbulence models", Sigma J. Eng. Natural Sci., 35(1), 133-155. 
  58. Omidi, S., Oskooee, M.B. and Shafiei, N. (2013), "Finite element analysis of an ultra-fine grained Titanium dental implant covered by different thicknesses of hydroxyapatite layer", Indian J. Dent., 4(1), 1-4. https://doi.org/10.1016/j.ijd.2012.10.002. 
  59. Pollack, M.E. (1995), "Artificial intelligence - A modern approach - A review", AI Magazine, 16(3), 73. https://doi.org/10.1609/aimag.v16i3.1153. 
  60. Ramesh, A.N., Kambhampati, C., Monson, J.R. and Drew, P.J. (2004), "Artificial intelligence in medicine", Ann. R. Coll. Surg. Engl., 86(5), 334-338. https://doi.org/10.1308/147870804290. 
  61. Ren, Z., Zeng, H., Zeng, X., Chen, X. and Wang, X. (2023), "Effect of nanographite conductive concrete mixed with magnetite sand excited by different alkali activators and their combinations on the properties of conductive concrete", Buildings, 13(7). https://doi.org/10.3390/buildings13071630. 
  62. Scholer, A., Lothenbach, B., Winnefeld, F., Haha, M.B., Zajac, M. and Ludwig, H.M. (2017), "Early hydration of SCM-blended Portland cements: A pore solution and isothermal calorimetry study", Cement Concr. Res., 93, 71-82. https://doi.org/10.1016/j.cemconres.2016.11.013. 
  63. Scrivener, K.L., Juilland, P. and Monteiro, P.J.M. (2015), "Advances in understanding hydration of Portland cement", Cement Concr. Res., 78, 38-56. https://doi.org/10.1016/j.cemconres.2015.05.025. 
  64. Senff, L., Labrincha, J.A., Ferreira, V.M., Hotza, D. and Repette, W.L. (2009), "Effect of nano-silica on rheology and fresh properties of cement pastes and mortars", Constr. Build. Mater., 23(7), 2487-2491. https://doi.org/10.1016/j.conbuildmat.2009.02.005. 
  65. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Math. Modell., 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061. 
  66. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32. https://doi.org/10.22034/jsm.2019.563759.1273. 
  67. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A, 122(8), 728. https://doi.org/10.1007/s00339-016-0245-y. 
  68. Shahabinejad, E., Shafiei, N. and Ghadiri, M. (2018), "Influence of temperature change on modal analysis of rotary functionally graded nano-beam in thermal environment", J. Solid Mech., 10(4), 779-803. https://jsm.arak.iau.ir/article_545719.html. 
  69. Shen, W., Pei, P., Zhang, C., Li, J., Han, X., Liu, T., Shi, X., Su, Z., Han, G., Hu, L. and Yang, K. (2023), "A polymeric hydrogel to eliminate programmed death-ligand 1 for enhanced tumor radioimmunotherapy", ACS Nano, 17(23), 23998-24011. https://doi.org/10.1021/acsnano.3c08875. 
  70. Shi, X., Yang, Y., Zhu, X. and Huang, Z. (2024), "Stochastic dynamics analysis of the rocket shell coupling system with circular plate fasteners based on spectro-geometric method", Compos. Struct., 329, 117727. https://doi.org/10.1016/j.compstruct.2023.117727. 
  71. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123(5), 329. https://doi.org/10.1007/s00339-017-0955-9. 
  72. Singh, L.P., Karade, S.R., Bhattacharyya, S.K., Yousuf, M.M. and Ahalawat, S. (2013), "Beneficial role of nanosilica in cement based materials - A review", Constr. Build. Mater., 47, 1069-1077. https://doi.org/10.1016/j.conbuildmat.2013.05.052. 
  73. Skibsted, J. and Snellings, R. (2019), "Reactivity of supplementary cementitious materials (SCMs) in cement blends", Cement Concr. Res., 124, 105799. https://doi.org/10.1016/j.cemconres.2019.105799. 
  74. Song, S., Zhang, T. and Zhui, Z. (2023), "Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories", Steel Compos. Struct., 49(5), 487. https://doi.org/10.12989/scs.2023.49.5.487. 
  75. Su, Z., Meng, J. and Su, Y. (2023), "Application of SiO2 nanocomposite ferroelectric material in preparation of trampoline net for physical exercise", Adv. Nano Res., 14(4), 355-362. https://doi.org/10.12989/anr.2023.14.4.355. 
  76. Tabish, M., Zaheer, M.M. and Baqi, A. (2023), "Effect of nanosilica on mechanical, microstructural and durability properties of cement-based materials: A review", J. Build. Eng., 65, 105676. https://doi.org/10.1016/j.jobe.2022.105676. 
  77. Tang, Y., Wang, Y., Wu, D., Chen, M., Pang, L., Sun, J., Feng, W. and Wang, X. (2023), "Exploring temperature-resilient recycled aggregate concrete with waste rubber: An experimental and multi-objective optimization analysis", Rev. Adv. Mater. Sci., 62(1). https://doi.org/10.1515/rams-2023-0347. 
  78. Wang, G., Peng, K., Zhou, H., Liu, G., Lou, Z. and Pan, F. (2023), "Nanocomposite reinforced structures to deal with injury in physical sports", Adv. Nano Res., 14(6), 541-555. https://doi.org/10.12989/anr.2023.14.6.541. 
  79. Xia, B., Huang, X., Chang, L., Zhang, R., Liao, Z. and Cai, Z. (2023), "The arrangement patterns optimization of 3D honeycomb and 3D re-entrant honeycomb structures for energy absorption", Mater. Today Commun., 35, 105996. https://doi.org/10.1016/j.mtcomm.2023.105996. 
  80. Xu, J., Li, Y., Lu, L., Cheng, X. and Li, L. (2023a), "Strength and durability of marine cement-based mortar modified by colloidal nano-silica with epoxy silane for low CO2 emission", J. Clean. Prod., 382, 135281. https://doi.org/10.1016/j.jclepro.2022.135281. 
  81. Xu, Z., Guo, Z., Zhao, Y., Li, S., Luo, X., Chen, G., Liu, C. and Gao, J. (2023b), "Hydration of blended cement with highvolume slag and nano-silica", J. Build. Eng., 64, 105657. https://doi.org/10.1016/j.jobe.2022.105657. 
  82. Xue, B., Yang, Q., Jin, Y., Zhu, Q., Lan, J., Lin, Y., Tan, J., Liu, L., Zhang, T., Chirwa, E.M.N. and Zhou, X. (2023a), "Genotoxicity assessment of haloacetaldehyde disinfection byproducts via a simplified yeast-based toxicogenomics assay", Environ. Sci. Technol., 57(44), 16823-16833. https://doi.org/10.1021/acs.est.3c04956. 
  83. Xue, C., Sirivivatnanon, V., Nezhad, A. and Zhao, Q. (2023b), "Comparisons of alkali-activated binder concrete (ABC) with OPC concrete - A review", Cement Concr. Compos., 135, 104851. https://doi.org/10.1016/j.cemconcomp.2022.104851. 
  84. Yang, S., Huang, Z., Hu, Q., Zhang, Y., Wang, F., Wang, H. and Shu, Y. (2022a), "Proportional optimization model of multiscale spherical BN for enhancing thermal conductivity", ACS Appl. Electron. Mater., 4(9), 4659-4667. https://doi.org/10.1021/acsaelm.2c00878. 
  85. Yang, S., Zhang, Y., Sha, Z., Huang, Z., Wang, H., Wang, F. and Li, J. (2022b), "Deterministic manipulation of heat flow via three-dimensional-printed thermal meta-materials for multiple protection of critical components", ACS Appl. Mater. Interf., 14(34), 39354-39363. https://doi.org/10.1021/acsami.2c09602. 
  86. Yang, Y. and Mao, Y. (2023), "Effect of cross-section geometry on the stability performance of functionally graded cylindrical imperfect composite structures used in stadium construction", Geomech. Eng., 35(2), 181-194. https://doi.org/10.12989/gae.2023.35.2.181. 
  87. Ye, M., HangKong, O., Lin, Y., Ynag, Q., Xu, Q., Chen, T., Sun, L. and Ma, L. (2023), "Electron transport properties of Y-type zigzag branched carbon nanotubes", Adv. Nano Res., 15(3), 263-275. https://doi.org/10.12989/.2023.15.3.263. 
  88. Zhan, P., Xu, J., Wang, J., Zuo, J. and He, Z. (2022), "A review of recycled aggregate concrete modified by nanosilica and graphene oxide: Materials, performances and mechanism", J. Clean. Prod., 375, 134116. https://doi.org/10.1016/j.jclepro.2022.134116. 
  89. Zhang, H., Zou, Q., Ju, Y., Song, C. and Chen, D. (2022), "Distance-based support vector machine to predict DNA N6- methyladenine modification", Curr. Bioinform., 17(5), 473-482. https://doi.org/10.2174/1574893617666220404145517. 
  90. Zhang, L. and Huang, Y. (2023), "Investigating the role of nano in preserving the environment with new energy and preventing oil pollution", Adv. Nano Res., 15(6), 541-550. https://doi.org/10.12989/anr.2023.15.6.541. 
  91. Zhang, W., Kang, S., Liu, X., Lin, B. and Huang, Y. (2023a), "Experimental study of a composite beam externally bonded with a carbon fiber-reinforced plastic plate", J. Build. Eng., 71, 106522. https://doi.org/10.1016/j.jobe.2023.106522. 
  92. Zhang, Y. and Zhu, X. (2023), "Effect of nano-silica on the mechanical performance and microstructure of siliconaluminum-based internal-cured concrete", J. Build. Eng., 65, 105735. https://doi.org/10.1016/j.jobe.2022.105735. 
  93. Zhang, Z., Du, J. and Mahmoudi, T. (2023b), "Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil", Adv. Nano Res., 15(4), 355-366. https://doi.org/10.12989/anr.2023.15.4.355. 
  94. Zhao, H., Wang, H., Niu, B., Zhao, X. and Xu, N. (2024), "Adaptive fuzzy decentralized optimal control for interconnected nonlinear systems with unmodeled dynamics via mixed data and event driven method", Fuzzy Sets Syst., 474, 108735. https://doi.org/10.1016/j.fss.2023.108735.