참고문헌
- Aliha, M. and Ayatollahi, M. (2012), "Analysis of fracture initiation angle in some cracked ceramics using the generalized maximum tangential stress criterion", Int. J. Solids Struct., 49(13), 1877-1883. https://doi.org/10.1109/IFEEA51475.2020.00046.
- Andrade, H., Trevelyan, J. and Leonel, E. (2023), "Direct evaluation of stress intensity factors and T-stress for bimaterial interface cracks using the extended isogeometric boundary element method", Theoretical Appl. Fract. Mech., 104091. https://doi.org/10.1016/j.tafmec.2023.104091.
- Ayatollahi, M. and Aliha, M. (2009), "Mixed mode fracture in soda lime glass analyzed by using the generalized MTS criterion", Int. J. Solids Struct., 46(2), 311-321. https://doi.org/10.1016/j.ijsolstr.2008.08.035.
- Braun, M. and Ariza, M. (2019), "New lattice models for dynamic fracture problems of anisotropic materials", Compos. Part B: Eng., 172, 760-768. https://doi.org/10.1016/j.compositesb.2019.05.082.
- Braun, M. and Ariza, M. (2020), "A progressive damage based lattice model for dynamic fracture of composite materials", Compos. Sci. Technol., 200, 108335. https://doi.org/10.1016/j.compscitech.2020.108335.
- Braun, M., Ivanez, I. and Ariza, M. (2021), "A numerical study of progressive damage in unidirectional composite materials using a 2D lattice model", Eng. Fract. Mech., 249, 107767. https://doi.org/10.1016/j.engfracmech.2021.107767.
- Charalambides, P., Lund, J., Evans, A. and McMeeking, R. (1989), "A test specimen for determining the fracture resistance of bimaterial interfaces", J. Appl. Mech., 56(1), 77-82. https://doi.org/10.1115/1.3176069.
- Chen, S., Shi, X. and Qiu, Z. (2011), "Shear bond failure in composite slabs-a detailed experimental study", Steel Compos. Struct., 11(3), 233-250. https://doi.org/10.12989/scs.2011.11.3.233.
- Chow, W. and Atluri, S. (1995), "Finite element calculation of stress intensity factors for interfacial crack using virtual crack closure integral", Comput. Mech., 16(6), 417-425. https://doi.org/10.1007/BF00370563.
- Chyanbin, H. (1993), "Fracture parameters for the orthotropic bimaterial interface cracks", Eng. Fract. Mech., 45(1), 89-97. https://doi.org/10.1016/0013-7944(93)90010-P.
- Dall'Asta, A., Dezi, L. and Leoni, G. (2002), "Failure mechanisms of externally prestressed composite beams with partial shear connection", Steel Compos. Struct., 2(5), 315-330. https://doi.org/10.12989/scs.2002.2.5.315.
- Daneshjoo, Z., Shokrieh, M., Fakoor, M. and Alderliesten, R. (2018), "A new mixed mode I/II failure criterion for laminated composites considering fracture process zone", Theoretical Appl. Fract. Mech., 98, 48-58. https://doi.org/10.1016/j.tafmec.2018.09.004.
- Erdogan, F. and Sih, G. (1963), "On the crack extension in plates under plane loading and transverse shear", J. Fluids Mech., 85, 519-525. https://doi.org/10.1115/1.3656897.
- Esmaeili, A., Mohammadi, B. and Yousefi, A. (2023), "Fracture parameters and crack initiation assessment employing mixed-mode I/II fracture criterion in laminate composites using digital image correlation method", Theoretical Appl. Fract. Mech., 127, 104095. https://doi.org/10.1016/j.tafmec.2023.104095.
- Fakoor, M. and Khaji, Z. (2023), "A comprehensive study on the influence of T-stress term on crack initiation angle in orthotropic materials based on the modification of MTS, MSS, SER and SED criteria", Theoretical Appl. Fract. Mech., 124, 103751. https://doi.org/10.1016/j.tafmec.2023.103751.
- Fakoor, M. and Khansari, N.M. (2018), "General mixed mode I/II failure criterion for composite materials based on matrix fracture properties", Theoretical Appl. Fract. Mech., 96, 428-442. https://doi.org/10.1016/j.tafmec.2018.06.004.
- Fakoor, M. and Shahsavar, S. (2021), "The effect of T-stress on mixed mode I/II fracture of composite materials: Reinforcement isotropic solid model in combination with maximum shear stress theory", Int. J. Solids Struct., 229, 111145. https://doi.org/10.1016/j.ijsolstr.2021.111145.
- Fakoor, M., Rafiee, R. and Zare, S. (2019), "Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials", Steel Compos. Struct., 30(1), 1-12. https://doi.org/10.12989/scs.2019.30.1.001.
- Farid, H.M. and Fakoor, M. (2020), "Mixed mode I/II fracture criterion to anticipate behavior of the orthotropic materials", Steel Compos. Struct., 34(5), 671-679. https://doi.org/10.12989/scs.2020.34.5.671.
- Golewski, G. and Sadowski, T. (2017), "The fracture toughness the KIIIc of concretes with F fly ash (FA) additive", Construct. Build. Mater., 143, 444-454. https://doi.org/10.1016/j.conbuildmat.2017.03.137.
- Golewski, G.L. (2017), "Improvement of fracture toughness of green concrete as a result of addition of coal fly ash Characterization of fly ash microstructure", Mater. Character., 134, 335-346. https://doi.org/10.1016/j.matchar.2017.11.008.
- Golewski, G.L. (2021), "Evaluation of fracture processes under shear with the use of DIC technique in fly ash concrete and accurate measurement of crack path lengths with the use of a new crack tip tracking method", Measurement, 181, 109632. https://doi.org/10.1016/j.measurement.2021.109632.
- Golewski, G.L. (2023a), "Concrete composites based on quaternary blended cements with a reduced width of initial microcracks", Appl. Sci., 13(12), 7338. https://doi.org/10.3390/app13127338.
- Golewski, G.L. (2023b), "Effect of coarse aggregate grading on mechanical parameters and fracture toughness of limestone concrete", Infrastructures, 8(8), 117. https://doi.org/10.3390/infrastructures8080117.
- Golewski, G.L. (2023c), "Mechanical properties and brittleness of concrete made by combined fly ash, silica fume and nanosilica with ordinary Portland cement", AIMS Mater. Sci, 10(3), 390-404. https://doi.org/10.3934/matersci.2023021.
- Golewski, G.L. (2023d), "The phenomenon of cracking in cement concretes and reinforced concrete structures: the mechanism of cracks formation, causes of their initiation, types and places of occurrence, and methods of detection-a review", Buildings, 13(3), 765. https://doi.org/10.3390/buildings13030765.
- Golewski, G.L. (2023e), "Study of strength and microstructure of a new sustainable concrete incorporating pozzolanic materials", Struct. Eng. Mech., 86(4), 431-441. https://doi.org/10.12989/sem.2023.86.4.431.
- Hamdi, S.E., Pitti, R.M. and Dubois, F. (2017), "Temperature variation effect on crack growth in orthotropic medium: Finite element formulation for the viscoelastic behavior in thermal cracked wood-based materials", Int. J. Solids Struct., 115, 1-13. https://doi.org/10.1016/j.ijsolstr.2016.09.019.
- He, M.-Y. and Hutchinson, J.W. (1989), "Kinking of a crack out of an interface", J. Appl. Mech., 52(6), 270-278.https://doi.org/10.1115/1.3176078
- Hutchinson, J.W. and Suo, Z. (1991), "Mixed mode cracking in layered materials", Adv. Appl. Mech., 29, 63-191. https://doi.org/10.1016/S0065-2156(08)70164-9.
- Kaman, M.O. and Cetisli, F. (2012), "Numerical analysis of center cracked orthotropic fgm plate: Crack and material axes differ by θo", Steel Compos. Struct., 13(2), 187-206. https://doi.org/10.12989/scs.2012.13.2.187.
- Khaji, Z. and Fakoor, M. (2021), "Strain energy release rate in combination with reinforcement isotropic solid model (SERIS): A new mixed-mode I/II criterion to investigate fracture behavior of orthotropic materials", Theoretical Appl. Fract. Mech., 113, 102962. https://doi.org/10.1016/j.tafmec.2021.102962.
- Khaji, Z. and Fakoor, M. (2022a), "Enhancing the ability of strain energy release rate criterion for fracture assessment of orthotropic materials under mixed-mode I/II loading considering the effect of crack tip damage zone", Steel Compos. Struct., 44(6), 803-814. https://doi.org/10.12989/scs.2022.44.6.817.
- Khaji, Z. and Fakoor, M. (2022b), "Examining the effect of crack initiation angle on fracture behavior of orthotropic materials under mixed-mode I/II loading", Int. J. Solids Struct., 256, 111952. https://doi.org/10.1016/j.ijsolstr.2022.111952.
- Khaji, Z., Fakoor, M., Farid, H.M. and Alderliesten, R. (2022), "Applying the new experimental midpoint concept on strain energy density for fracture assessment of composite materials", Theoretical Appl. Fract. Mech., 121, 103522. https://doi.org/10.1016/j.tafmec.2022.103522.
- Khansari, N.M., Fakoor, M. and Berto, F. (2019), "Probabilistic micromechanical damage model for mixed mode I/II fracture investigation of composite materials", Theoretical Appl. Fract. Mech., 99, 177-193. https://doi.org/10.1016/j.tafmec.2018.12.003.
- Lee, H. and Kim, Y.-J. (2001), "Interfacial crack-tip constraints and J-integrals in plastically mismatched bi-materials", Eng. Fract. Mech., 68(8), 1013-1031. https://doi.org/10.1016/S0013-7944(01)00007-8.
- Li, X.-F. and Xu, L. R. (2007), "T-stresses across static crack kinking", Journal of applied mechanics, 74(2), 181-190. https://doi.org/10.1115/1.2188016.
- Mulville, D., Mast, P. and Vaishnav, R. (1976), "Strain energy release rate for interfacial cracks between dissimilar media", Eng. Fract. Mech., 8(3), 555-565. https://doi.org/10.1016/0013-7944(76)90009-6.
- Muthu, N., Maiti, S., Falzon, B. and Yan, W. (2016), "Crack propagation in non-homogenous materials: Evaluation of mixed-mode SIFs, T-stress and kinking angle using a variant of EFG Method", Eng. Anal. Bound. Elements, 72, 11-26. https://doi.org/10.1016/j.enganabound.2016.07.017.
- Natarajan, S., Song, C. and Belouettar, S. (2014), "Numerical evaluation of stress intensity factors and T-stress for interfacial cracks and cracks terminating at the interface without asymptotic enrichment", Comput. Meth. Appl. Mech. Eng., 279, 86-112. https://doi.org/10.1016/j.cma.2014.06.024.
- Noda, N.-A., Miyazaki, T., Li, R., Uchikoba, T., Sano, Y. and Takase, Y. (2015), "Debonding strength evaluation in terms of the intensity of singular stress at the interface corner with and without fictitious crack", Int. J. Adhesion Adhesives, 61, 46-64. https://doi.org/10.1016/j.ijadhadh.2015.04.005.
- Pitti, R.M., Dubois, F., Petit, C. and Sauvat, N. (2007), "Mixed mode fracture separation in viscoelastic orthotropic media: numerical and analytical approach by the M θ v-integral", Int. J. Fract., 145, 181-193. https://doi.org/10.1007/s10704-007-9111-4.
- Pitti, R.M., Dubois, F., Pop, O. and Absi, J. (2009), "A finite element analysis for the mixed mode crack growth in a viscoelastic and orthotropic medium", Int. J. Solids Struct., 46(20), 3548-3555. https://doi.org/10.1016/j.ijsolstr.2009.05.020.
- Qian, W. and Sun, C. (1998), "Methods for calculating stress intensity factors for interfacial cracks between two orthotropic solids", Int. J. Solids Struct., 35(25), 3317-3330. https://doi.org/10.1016/S0020-7683(97)00181-9.
- Rafiee, R., Fakoor, M. and Hesamsadat, H. (2015), "The influence of production inconsistencies on the functional failure of GRP pipes", Steel Compos. Struct., 19(6), 1369-1379. https://doi.org/10.12989/scs.2015.19.6.1369.
- Raimondo, A., Urcelay Oca, I. and Bisagni, C. (2021), "Influence of interface ply orientation on delamination growth in composite laminates", J. Compos. Mater., 55(27), 3955-3972. https://doi.org/10.1177/00219983211031636.
- Rice, J. (1988), "Elastic fracture mechanics concepts for interfacial cracks", J. Appl. Mech., 55(1), 98-103. https://doi.org/10.1115/1.3173668.
- Rizov, V.I. (2017), "Non-linear study of mode II delamination fracture in functionally graded beams", Steel Comp. Struct, 23, 263-271. https://doi.org/10.12989/scs.2017.23.3.263.
- Ryoji, Y. and Jin-Quan, X. (1992), "Stress based criterion for an interface crack kinking out of the interface in dissimilar materials", Eng. Fract. Mech., 41(5), 635-644. https://doi.org/10.1016/0013-7944(92)90150-D.
- Shahsavar, S., Fakoor, M. and Berto, F. (2021), "Mixed mode I/II fracture criterion to anticipate cracked composite materials based on a reinforced kinked crack along maximum shear stress path", Steel Compos. Struct., 39(6), 765-779. https://doi.org/10.12989/scs.2021.39.6.765.
- Shokrieh, M., Daneshjoo, Z. and Fakoor, M. (2016), "A modified model for simulation of mode I delamination growth in laminated composite materials", Theoretical Appl. Fract. Mech., 82, 107-116. https://doi.org/10.1016/j.tafmec.2015.12.012.
- Smith, D., Ayatollahi, M. and Pavier, M. (2001), "The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading", Fatigue Fract. Eng. Mater. Struct., 24(2), 137-150. https://doi.org/10.1046/j.1460-2695.2001.0037.x.
- Sun, C. and Manoharan, M. (1989), "Strain energy release rates of an interfacial crack between two orthotropic solids", J. Compos. Mater., 23(5), 460-478. https://doi.org/10.1177/002199838902300503.
- Sun, C.T. and Jih, C. (1987), "On strain energy release rates for interfacial cracks in bi-material media", Eng. Fract. Mech., 28(1), 13-20. https://doi.org/10.1016/0013-7944(87)90115-9.
- Toribio, J. and Ayaso, F. (2003), "A fracture criterion for high-strength steel structural members containing notch-shape defects", Steel Compos. Struct., 3(4), 231-242. https://doi.org/10.12989/scs.2003.3.4.231.
- Zhou, Z., Xu, X., Leung, A.Y. and Huang, Y. (2013), "Stress intensity factors and T-stress for an edge interface crack by symplectic expansion", Eng. Fract. Mech., 102, 334-347. https://doi.org/10.1016/j.engfracmech.2013.03.007.
- Zhu, D. and Du, W. (2022), "A criterion for a hydraulic fracture crossing a frictional interface considering T-stress", J. Petroleum Sci. Eng., 209, 109824. https://doi.org/10.1016/j.petrol.2021.109824.