References
- Abo-bakr R.M., Mohamed N., Eltaher, M.A. and Emam S. (2023), "Multi-objective optimization for snap-through response of spherical shell panels", Appl. Math. Model., https://doi.org/10.1016/j.apm.2023.12.014.
- Ahmadi, H., Bayat, A. and Duc, N.D. (2021), "Nonlinear forced vibrations analysis of imperfect stiffened FG doubly curved shallow shell in thermal environment using multiple scales method", Compos. Struct., 256, 113090. https://doi.org/10.1016/j.compstruct.2020.113090.
- Ali, M.I. and Azam, M.S. (2021), "Dynamic stiffness formulation for out-of-plane natural vibration of elastically supported functionally graded plates", Int. J. Struct. Stab. Dyn., 21(05), 2150062. https://doi.org/10.1142/S0219455421500620.
- Alijani, F., Amabili, M., Karagiozis, K. and Bakhtiari-Nejad, F. (2011), "Nonlinear vibrations of functionally graded doubly curved shallow shells", J. Sound. Vib., 330(7), 1432-1454. https://doi.org/10.1016/j.jsv.2010.10.003.
- Amoozgar, M. and Gelman, L. (2022), "Vibration analysis of rotating porous functionally graded material beams using exact formulation", J. Vib. Control., 28(21-22), 3195-3206. https://doi.org/10.1177/10775463211027883.
- Arefi, M. (2020), "Smart analysis of doubly curved piezoelectric nano shells: electrical and mechanical buckling analysis", Smart. Struct. Syst., 25(4), 471-486. https://doi.org/10.12989/sss.2020.25.4.471.
- Asadijafari, M.H., Zarastvand, M.R. and Talebitooti, R. (2021), "The effect of considering Pasternak elastic foundation on acoustic insulation of the finite doubly curved composite structures", Compos. Struct., 256, 113064. https://doi.org/10.1016/j.compstruct.2020.113064.
- Babaei, H. (2022), "Thermomechanical analysis of snap-buckling phenomenon in long FG-CNTRC cylindrical panels resting on nonlinear elastic foundation", Compos. Struct., 286, 115199. https://doi.org/10.1016/j.compstruct.2022.115199.
- Babaei, H., Jabbari, M. and Eslami, M.R. (2021), "The effect of porosity on elastic stability of toroidal shell segments made of saturated porous functionally graded materials", J. Press. Vess-t. Asme., 143(3), 031501. https://doi.org/10.1115/1.4048418.
- Basturk, S. (2019), "The nonlinear dynamic response of functionally graded basalt/nickel composite plates", Mech. Adv. Mater. Struct., 26(20), 1719-1734. https://doi.org/10.1080/15376494.2018.1446109.
- Chen, S.H. and Cheung, Y.K. (1996), "A modified Lindstedt-Poincare method for a strongly nonlinear system with quadratic and cubic nonlinearities", Shock. Vib., 3(4), 279-285. https://doi.org/10.1155/1996/231241.
- Chen, X., Zhao, J.L., She, G.L., Jing, Y., Pu, H.Y. and Luo, J. (2022), "Nonlinear free vibration analysis of functionally graded carbon nanotube reinforced fluid-conveying pipe in thermal environment", Steel. Compos. Struct., 45(5), 641-652. https://doi.org/10.12989/scs.2022.45.5.641.
- Chorfi, S.M. and Houmat, A. (2010), "Non-linear free vibration of a functionally graded doubly-curved shallow shell of elliptical plan-form", Compos. Struct., 92(10), 2573-2581. https://doi.org/10.1016/j.compstruct.2010.02.001.
- Ding, H.X. and She, G.L. (2023a), "Nonlinear resonance of axially moving graphene platelet-reinforced metal foam cylindrical shells with geometric imperfection", Archives Civil Mech. Eng., 23, 97. https://doi.org/10.1007/s43452-023-00634-6
- Ding, H.X. and She, G.L. (2023b), "Nonlinear primary resonance behavior of graphene platelets reinforced metal foams conical shells under axial motion", Nonlinear Dyn., 111(15), 13723-13752. https://doi.org/10.1007/s11071-023-08564-x.
- Ding, H.X. and She, G.L. (2023c), "Nonlinear combined resonances of axially moving graphene platelets reinforced metal foams cylindrical shells under forced vibrations", Nonlinear Dyn. https://doi.org/10.1007/s11071-023-09059-5.
- Ding, H.X., Eltaher, M.A. and She, G.L. (2023a), "Nonlinear low-velocity impact of graphene platelets reinforced metal foams cylindrical shell: Effect of spinning motion and initial geometric imperfections", Aeros. Sci. Technol., 140, 108435. https://doi.org/10.1016/j.ast.2023.108435.
- Ding, H.X., Liu, H.B., She, G.L. and Wu, F. (2023c), "Wave propagation of FG-CNTRC plates in thermal environment using the high-order shear deformation plate theory", Comput. Concrete, 32(2), 207-215. https://doi.org/10.12989/cac.2023.32.2.207.
- Ding, H.X., She, G.L. and Zhang, Y.W. (2022a), "Nonlinear buckling and resonances of functionally graded fluid-conveying pipes with initial geometric imperfection", Eur. Phys. J. Plus, 137, 1329. https://doi.org/10.1140/epjp/s13360-022-03570-1.
- Ding, H.X., Zhang, Y.W. and She, G.L. (2022b), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6),433-443. https://doi.org/10.12989/cac.2022.30.6.433.
- Ding, H.X., Zhang, Y.W. and She, G.L. (2023b), "Propagation characteristics of guided waves in CNTRCs plates resting on elastic foundations in a thermal environment", Waves Random Complex Media. https://doi.org/10.1080/17455030.2023.2235611.
- Ding, H.X., Zhang, Y.W., Li, Y.P. and She, G.L. (2023d), "Nonlinear low-velocity impact response of graphene platelets reinforced metal foams doubly curved shells", Steel Compos. Struct., 49(3), 281-291. https://doi.org/10.12989/scs.2023.49.3.281.
- Dong, Y., Hu, H., Wang, L. and Mao, X. (2024), "Nonlinear coupled multi-mode vibrations of simply-supported cylindrical shells: Comparison studies", Commun. Nonlinear Sci. Numer. Simulat., 128, 107667. https://doi.org/10.1016/j.cnsns.2023.107667
- Eshraghi, I. and Dag, S. (2020), "Forced vibrations of functionally graded annular and circular plates by domain-boundary element method", Zamm-z. Angew. Math. Me., 100(8), e201900048. https://doi.org/10.1002/zamm.201900048.
- Ezzin, H., Mkaoir, M., Arefi, M., Qian, Z. and Das, R. (2021), "Analysis of guided wave propagation in functionally graded magneto-electro elastic composite", Wave Random Complex, 1-19. https://doi.org/10.1080/17455030.2021.1968541.
- Gan, L.L. and She, G.L. (2023), "Nonlinear snap-buckling and resonance of FG-GPLRC curved beams with different boundary conditions", Geomech. Eng., 32(5), 541-551. https://doi.org/10.12989/gae.2023.32.5.541.
- Gan, L.L. and She, G.L. (2024), "Nonlinear low-velocity impact of magneto-electro-elastic plates with initial geometric imperfection", Acta Astronautica, 214, 11-29. https://doi.org/10.1016/j.actaastro.2023.10.016.
- Gan, L.L., Xu, J.Q. and She, G.L. (2023), "Wave propagation of graphene platelets reinforced metal foams circular plates", Struct. Eng. Mech., 85(5), 645-654. https://doi.org/10.12989/sem.2023.85.5.645.
- Ghandourah, E.E., Daikh, A.A., Khatir, S., Alhawsawi, A.M., Banoqitah, E.M. and Eltaher, M.A. (2023), "A dynamic analysis of porous coated functionally graded nanoshells rested on viscoelastic medium", Mathematics-basel., 11(10), 2407. https://doi.org/10.3390/math11102407.
- Hao, Y.X., Cao, Z., Zhang, W., Chen, J. and Yao, M.H. (2019), "Stability analysis for geometric nonlinear functionally graded sandwich shallow shell using a new developed displacement field", Compos. Struct., 210, 202-216. https://doi.org/10.1016/j.compstruct.2018.11.027.
- Hong, C.C. (2021), "Vibration frequency of thick functionally graded material cylindrical shells with fully homogeneous equation and third-order shear deformation theory under thermal environment", J. Vib. Control., 27(17-18), 2004-2017. https://doi.org/10.1177/1077546320951663.
- Huang, X.L., Dong, L., Wei, G.Z. and Zhong, D.Y. (2019), "Nonlinear free and forced vibrations of porous sigmoid functionally graded plates on nonlinear elastic foundations", Compos. Struct., 228, 111326. https://doi.org/10.1016/j.compstruct.2019.111326.
- Karimiasl, M., Ebrahimi, F. and Akgoz, B. (2019), "Buckling and post-buckling responses of smart doubly curved composite shallow shells embedded in SMA fiber under hygro-thermal loading", Compos. Struct., 223, 110988. https://doi.org/10.1016/j.compstruct.2019.110988.
- Kim, S.E., Duc, N.D., Nam, V.H. and Van Sy, N. (2019), "Nonlinear vibration and dynamic buckling of eccentrically oblique stiffened FGM plates resting on elastic foundations in thermal environment", Thin. Wall. Struct., 142, 287-296. https://doi.org/10.1016/j.tws.2019.05.013.
- Kumar, S., Ranjan, V. and Jana, P. (2018), "Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method", Compos. Struct., 197, 39-53. https://doi.org/10.1016/j.compstruct.2018.04.085.
- Li, J. Q., Xue, Y. and Li, F. (2023b), "Active band gap control of magnetorheological meta-plate using frequency feedback control law", J. Sound Vib., 567, 118076. https://doi.org/10.1016/j.jsv.2023.118076.
- Li, Y.P., She, G.L., Gan, L.L. and Liu, H.B (2023a), "Nonlinear thermal post-buckling analysis of graphene platelets reinforced metal foams plates with initial geometrical imperfection", Steel Compos Struct., 46(5), 649-658. https://doi.org/10.12989/scs.2023.46.5.649.
- Li, Z.M., Liu, T. and Qiao, P. (2021), "Buckling and postbuckling of anisotropic laminated doubly curved panels under lateral pressure", Int. J. Mech. Sci., 206, 106615. https://doi.org/10.1016/j.ijmecsci.2021.106615.
- Loja, M.A.R. and Barbosa, J.I. (2020), "In-plane functionally graded plates: A study on the free vibration and dynamic instability behaviours", Compos. Struct., 237, 111905. https://doi.org/10.1016/j.compstruct.2020.111905.
- Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Hamouda, A.M.S. (2020), "Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners", Struct. Eng. Mech., 75(6), 701-711. https://doi.org/10.12989/sem.2020.75.6.701.
- Mohamed, S.A., Assie, A.E. and Eltaher, M.A. (2023b), "Novel incremental procedure in solving nonlinear static response of 2D-FG porous plates", Thin. Wall. Struct., 189, 110779. https://doi.org/10.1016/j.tws.2023.110779.
- Mohamed, Y., Tharwan, A.A.D., Assie, A.E., Alnujaie, A. and Eltaher, M.A. (2023a), "A comprehensive study on static response of agglomerated microstructure-dependent coated functionally graded carbon nanotubes reinforced composite nanoshells rested on complex elastic foundation", Mech. Based Des. Struct., https://doi.org/10.1080/15397734.2023.2286484.
- Mohammadi, M., Mohseni, E. and Moeinfar, M. (2019), "Bending, buckling and free vibration analysis of incompressible functionally graded plates using higher order shear and normal deformable plate theory", Appl. Math. Model., 69, 47-62. https://doi.org/10.1016/j.apm.2018.11.047.
- Nazari, H., Babaei, M., Kiarasi, F. and Asemi, K. (2021), "Geometrically nonlinear dynamic analysis of functionally graded material plate excited by a moving load applying first-order shear deformation theory via generalized differential quadrature method", Sn. Appl. Sci., 3, 1-32. https://doi.org/10.1007/s42452-021-04825-9.
- Reddy, J.N. (1984), "Exact solutions of moderately thick laminated shells", J. Eng. Mech-asce., 110(5), 794-809. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:5(794).
- Salehipour, H., Emadi, S., Tayebikhorami, S. and Shahmohammadi, M.A. (2021), "A semi-analytical solution for dynamic stability analysis of nanocomposite/fibre-reinforced doubly-curved panels resting on the elastic foundation in thermal environment", Eur. Phys. J. Plus., 137(1), 2. https://doi.org/10.1140/epjp/s13360-021-02190-5.
- Shakir, M. and Talha, M. (2019), "On the dynamic response of imperfection sensitive higher order functionally graded plates with random system parameters", Int. J. Appl. Mech., 11(03), 1950025. https://doi.org/10.1142/S175882511950025X.
- Shan, W.B. and She, G.L. (2023), "Nonlinear resonance of porous functionally graded nanoshells with geometrical imperfection", Struct. Eng. Mech., 88(4), 355-368. https://doi.org/10.12989/sem.2023.88.4.355.
- She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mech. Sin., 39, 522392. https://doi.org/10.1007/s10409-022-22392-x.
- She, G.L. and Li, Y.P. (2022), "Wave propagation in an FG circular plate in thermal environment", Geomech. Eng., 31(6), 615-622. https://doi.org/10.12989/gae.2022.31.6.615.
- She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225.
- Sobhy, M. and Zenkour, A.M. (2019), "Vibration analysis of functionally graded graphene platelet-reinforced composite doubly-curved shallow shells on elastic foundations", Steel Compos. Struct., 33(2), 195-208. https://doi.org/10.12989/scs.2019.33.2.195.
- Tharwan, M.Y., Daikh, A.A., Assie, A.E., Alnujaie, A. and Eltaher, M.A. (2023), "Refined quasi-3D shear deformation theory for buckling analysis of functionally graded curved nanobeam rested on Winkler/Pasternak/Kerr foundation", Mech. Based Des. Struct., https://doi.org/10.1080/15397734.2023.2270043.
- Van Long, N., Thinh, T.I., Bich, D.H. and Tu, T.M. (2022), "Nonlinear dynamic responses of sandwich-FGM doubly curved shallow shells subjected to underwater explosions using first-order shear deformation theory", Ocean. Eng., 260, 111886. https://doi.org/10.1016/j.oceaneng.2022.111886.
- Viet Hoang, V.N., Tien, N.D., Ninh, D.G., Thang, V.T. and Truong, D.V. (2021), "Nonlinear dynamics of functionally graded graphene nanoplatelet reinforced polymer doubly-curved shallow shells resting on elastic foundation using a micromechanical model", J. Sandw. Struct. Mater., 23(7), 3250-3279. https://doi.org/10.1177/1099636220926650.
- Wang, A., Chen, H. and Zhang, W. (2019), "Nonlinear transient response of doubly curved shallow shells reinforced with graphene nanoplatelets subjected to blast loads considering thermal effects", Compos. Struct., 225, 111063. https://doi.org/10.1016/j.compstruct.2019.111063.
- Wang, Y.Q. (2018), "Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state", Acta. Astronaut., 143, 263-271. https://doi.org/10.1016/j.actaastro.2017.12.004.
- Wu, F. and She, G.L. (2023), "Wave propagation in double nano-beams in thermal environments using the Reddy's high-order shear deformation theory", Adv. Nano Res., 14(6), 495-506. https://doi.org/10.12989/anr.2023.14.6.495.
- Xie, Z., Jiao, J. and Wrona, S. (2023), "The fluid-structure interaction lubrication performances of a novel bearing: experimental and numerical study", Tribology Int., 179, 108151. https://doi.org/10.1016/j.triboint.2022.108151.
- Xie, Z., Jiao, J., Zhao, B., Zhang, J. and Xu, F. (2024), "Theoretical and experimental research on the effect of bi-directional misalignment on the static and dynamic characteristics of a novel bearing", Mech. Syst. Signal Processing, 208, 111041. https://doi.org/10.1016/j.ymssp.2023.111041.
- Xu, J.Q. and She, G.L. (2022), "Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection", Geomech. Eng., 31(3), 329-337. https://doi.org/10.12989/gae.2022.31.3.329.
- Xu, J.Q. and She, G.L. (2023a), "Thermal post-buckling of graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Struct. Eng. Mech., 87(1), 85-94. https://doi.org/10.12989/sem.2023.87.1.085.
- Xu, J.Q. and She, G.L. (2023b), "The effects of temperature and porosity on resonance behavior of graphene platelet reinforced metal foams doubly-curved shells with geometric imperfection", Geomech. Eng., 35(1), 81-93. https://doi.org/10.12989/gae.2023.35.1.081.
- Xu, J.Q. and She, G.L. (2023c), "Resonance behavior of functionally graded carbon nanotube-reinforced composites shells with spinning motion and axial motion", Steel Compos. Struct., 49(3), 325-335. https://doi.org/10.12989/scs.2023.49.3.325.
- Xu, J.Q. and She, G.L. (2023d), "Thermal post-buckling and primary resonance of porous functionally graded beams: Effect of elastic foundations and geometric imperfection", Comput. Concrete, 32(6), 543-551. https://doi.org/10.12989/cac.2023.32.6.543.
- Xu, J.Q., She, G.L., Li. Y.P. and Gan, L.L. (2023), "Nonlinear resonances of nonlocal strain gradient nanoplates made of functionally graded materials considering geometric imperfection", Steel Compos. Struct., 47(6), 795-811. https://doi.org/10.12989/scs.2023.47.6.795.
- Xue, Y., Li, J., Li, F. and Song, Z. (2019), "Active control of plates made of functionally graded piezoelectric material subjected to thermo-electro-mechanical loads", Int. J. Struct. Stab. Dyn., 19(09), 1950107. https://doi.org/10.1142/S0219455419501074.
- Xue, Y., Li, J., Wang, Y., Song, Z. and Krushynska, A.O. (2023), "Widely tunable magnetorheological metamaterials with nonlinear amplification mechanism", Int. J. Mech. Sci., 264, 108830. https://doi.org/10.1016/j.ijmecsci.2023.108830.
- Yu, C., Meng, Z., Zhang, X., Li, S., Xu, W. and Chiu, C. (2022), "Orthogonal polynomials-ritz method for dynamic response of functionally graded porous plates using FSDT", Int. J. Struct. Stab. Dyn., 22(05), 2250057. https://doi.org/10.1142/S021945542250057.
- Zhai, Y., Ma, J. and Liang, S. (2021), "Dynamics properties of multi-layered composite sandwich doubly-curved shells", Compos. Struct., 256, 113142. https://doi.org/10.1016/j.compstruct.2020.113142.
- Zhang, J., Pan, S. and Chen, L. (2019), "Dynamic thermal buckling and postbuckling of clamped-clamped imperfect functionally graded annular plates", Nonlinear. Dyn., 95, 565-577. https://doi.org/10.1007/s11071-018-4583-5.
- Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel. Compos, Struct., 42(3) 397-405. https://doi.org/10.12989/scs.2022.42.3.397.
- Zhang, Y.W. and She, G.L. (2023a), "Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection", Nonlinear Dyn., 111(7), 6317-6334. https://doi.org/10.1007/s11071-022-08186-9.
- Zhang, Y.W. and She, G.L. (2023b), "Nonlinear primary resonance of axially moving functionally graded cylindrical shells in thermal environment", Mech. Adv. Mater. Struct., https://doi.org/10.1080/15376494.2023.2180556
- Zhang, Y.W. and She, G.L. (2024), "Combined resonance of graphene platelets reinforced metal foams cylindrical shells with spinning motion under nonlinear forced vibration", Eng. Struct., 300, 117177. https://doi.org/10.1016/j.engstruct.2023.117177.
- Zhang, Y.W., Ding, H.X. and She, G.L. (2022), "Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment", J. Therm. Stresses, 45(12), 1029-1042. https://doi.org/10.1080/01495739.2022.2125137.
- Zhang, Y.W., Ding, H.X. and She, G.L. (2023a), "Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes", Steel Compos. Struct., 46(1), 133-141. https://doi.org/10.12989/scs.2023.46.1.133.
- Zhang, Y.W., Ding, H.X., She, G.L. and Tounsi, A. (2023d), "Wave propagation of CNTRC beams resting on elastic foundation based on various higher-order beam theories", Geomech. Eng., 33(4), 381-391. https://doi.org/10.12989/gae.2023.33.4.381.
- Zhang, Y.W., She, G.L. and Ding, H.X. (2023b), "Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections", Eur. J. Mech. A-Solid., 98, 104887. https://doi.org/10.1016/j.euromechsol.2022.104887.
- Zhang, Y.W., She, G.L., Gan, L.L. and Li, Y.P. (2023c), "Thermal post-buckling behavior of GPLRMF cylindrical shells with initial geometrical imperfection", Geomech. Eng., 32(6), 615-625. https://doi.org/10.12989/gae.2023.32.6.615.
- Zhang, Y.W., She, G.L.,and Eltaher, M.A. (2023e), "Nonlinear transient response of graphene platelets reinforced metal foams annular plate considering rotating motion and initial geometric imperfection", Aeros. Sci. Technol., 142, 108693. https://doi.org/10.1016/j.ast.2023.108693.
- Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022a), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel. Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.
- Zhao, J.L., She, G.L., Wu, F., Yuan, S.J., Bai, R.Q., Pu, H.Y., Wang, S.L. and Luo, J. (2022b), "Guided waves of porous FG nanoplates with four edges clamped", Adv. Nano. Res., 13(5), 465-474. https://doi.org/10.12989/anr.2022.13.5.465.
- Zhao, Y.B. and Zheng, P.P. (2021), "Parameter analyses of suspended cables subjected to simultaneous combination, super and sub-harmonic excitations", Steel Compos. Struct., 40(2), 203-216. https://doi.org/10.12989/scs.2021.40.2.203.
- Zhao, Y.B., Peng, J., Zhao, Y.Y. and Chen, L.C. (2017), "Effects of temperature variations on nonlinear planar free and forced oscillations at primary resonance of suspended cables", Nonlinear Dyn., 89, 2815-2827. https://doi.org/10.1007/s11071-017-3627-6.