DOI QR코드

DOI QR Code

Anthraquinone as emerging contaminant: technological, toxicological, regulatory and analytical aspects

  • Alice Teresa Valduga (Graduate Program in Ecology, Universidade Regional Integrada do Alto Uruguai e das Missoes-Erechim) ;
  • Itamar Luis Goncalves (Faculty of Medicine, Universidade Regional Integrada do Alto Uruguai e das Missoes-Erechim) ;
  • Bruna Maria Saorin Puton (Graduate Program in Food Engineerng, Universidade Regional Integrada do Alto Uruguai e das Missoes-Erechim) ;
  • Bruna de Lima Hennig (Graduate Program in Ecology, Universidade Regional Integrada do Alto Uruguai e das Missoes-Erechim) ;
  • Edy Sousa de Brito (Embrapa Agroindústria Tropical)
  • Received : 2023.04.03
  • Accepted : 2023.07.12
  • Published : 2024.01.15

Abstract

Anthraquinone (anthracene-9,10-dione) is a multifaceted chemical used in the paper industry, in the production of synthetic dyes, in crop protection against birds and is released from fossil fuels. Additionally, the anthraquinone scaffold, when substituted with sugars and hydroxyl groups is found in plants as metabolites. Because of these multiple applications, it is produced on a large scale worldwide. However, its toxicological aspects have gained interest, due to the low limits in the foods defined by legislation. Worrying levels of anthracene-9,10-dione have been detected in wastewater, atmospheric air, soil, food packaging and more recently, in actual foodstuffs. Recent investigations aiming to identify the anthracene-9,10-dione contamination sources in teas highlighted the packaging, leaves processing, anthracene metabolism, reactions between tea constituents and deposition from the environment. In this context, this review seeks to highlight the uses, sources, biological effects, analytical and regulatory aspects of anthracene-9,10-dione.

Keywords

Acknowledgement

The authors thanks URI - Erechim, National Council for Scientific and Technological Development (CNPq - grant number 421630/2022-1), Coordination of Superior Level Staff Improvement (CAPES - grant number 88881.710370/2022-01) and Foundation for the Support of Research in the State of Rio Grande do Sul (FAPERGS), all from Brazil, for their financial support.

References

  1. EUROPEAN FOOD Safety Authority. Emerging risks. https://www.efsa.europa.eu/en/topics/topic/emerging-risks. Accessed 4 Sept 2023
  2. Sauve S, Desrosiers M (2014) A review of what is an emerging contaminant. Chem Cent J 8:15. https://doi.org/10.1186/1752-153x-8-15
  3. Elsunousi AAM, Sevik H, Cetin M, Ozel HB, Ozel HU (2021) Periodical and regional change of particulate matter and CO2 concentration in misurata. Environ Monit Assess 193:707. https://doi.org/10.1007/s10661-021-09478-0
  4. Cetin M, Onac AK, Sevik H, Sen B (2019) Temporal and regional change of some air pollution parameters in bursa. Air Qual Atmos Health 12:311-316. https://doi.org/10.1007/s11869-018-00657-6
  5. Cetin M, Aljama AMO, Alrabiti OBM, Adiguzel F, Sevik H (2022) Zeren Cetin, I. determination and mapping of regional change of pb and cr pollution in ankara city center. Water Air Soil Pollut 233:163. https://doi.org/10.1007/s11270-022-05638-1
  6. Cetin M (2019) The effect of urban planning on urban formations determining bioclimatic comfort area's effect using satellitia imagines on air quality: a case study of Bursa city. Air Qual Atmos Health 12:1237-1249. https://doi.org/10.1007/s11869-019-00742-4
  7. Wang X, Zhou L, Luo F, Zhang X, Sun H, Yang M, Lou Z, Chen Z (2018) 9,10-anthraquinone deposit in tea plantation might be one of the reasons for contamination in tea. Food Chem 244:254-259. https://doi.org/10.1016/j.foodchem.2017.09.123
  8. Yusiasih R, Pitoi MM, Ariyani M, Koesmawati TA, Maulana H (2019) Anthraquinone in indonesian infusion tea: analysis by HPLC-UV and risk assessment. Chem Biol Technol Agric 6:19. https://doi.org/10.1186/s40538-019-0155-2
  9. Anggraini T, Neswati; Nanda RF, Syukri D (2020) Identification of 9,10-anthraquinone contamination during black and green tea processing in indonesia. Food Chem 327:1-5. https://doi.org/10.1016/j.foodchem.2020.127092
  10. Diaz-Galiano FJ, Murcia-Morales M, Gomez-Ramos MdM, Ferrer C, Fernandez-Alba AR (2021) Presence of anthraquinone in coffee and tea samples. An improved methodology based on mass spectrometry and a pilot monitoring programme. Anal Methods 13:99-109. https://doi.org/10.1039/d0ay01962c
  11. Kartasasmita RE, Kurniawan F, Amelia T, Dewi CM, Harmoko H, Pratama Y (2020) Determination of anthraquinone in some indonesian black tea and its predicted risk characterization. ACS Omega 5:20162-20169. https://doi.org/10.1021/acsomega.0c01812
  12. Evans WC (2009) Trease and evans' pharmacognosy e-book. Elsevier Health Sciences. https://doi.org/10.1016/b978-0-7020-2933-2.00055-1
  13. El-Kashak WA, Elshamy AI, Mohamed TA, El Gendy AE-NG, Saleh IA, Umeyama A (2017) Rumpictuside a: unusual 9,10-anthraquinone glucoside from rumex pictus forssk. Carbohydr Res 448:74-78. https://doi.org/10.1016/j.carres.2017.05.023
  14. Li P, Lu Q, Jiang W, Pei X, Sun Y, Hao H, Hao K (2017) Pharmacokinetics and pharmacodynamics of rhubarb anthraquinones extract in normal and disease rats. Biomed Pharmacother 91:425-435. https://doi.org/10.1016/j.biopha.2017.04.109
  15. Duval J, Pecher V, Poujol M, Lesellier E (2016) Research advances for the extraction, analysis and uses of anthraquinones: a review. Ind Crops Prod 94:812-833. https://doi.org/10.1016/j.indcrop.2016.09.056
  16. Cheng F, Cheng Z (2015) Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci 6:1020-1020. https://doi.org/10.3389/fpls.2015.01020
  17. Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, Moreira PI, Doxorubicin (2009) The good, the bad and the ugly effect. Curr Med Chem 16:3267-3285. https://doi.org/10.2174/092986709788803312
  18. Chee CW, Zamakshshari NH, Lee VS, Abdullah I, Othman R, Lee YK, Mohd Hashim N (2022) Nor Rashid, N. Morindone from morinda citrifolia as a potential antiproliferative agent against colorectal cancer cell lines. PLoS One 17:e0270970. https://doi.org/10.1371/journal.pone.0270970
  19. Vogel A (2012) Anthraquinone. In: Elvers B (ed) Ullmann's encyclopedia of industrial chemistry. Wiley-VCH, pp 503-5011
  20. Cofrancesco AJ (2000) Anthraquinone. In: Kirk-othmer encyclopedia of chemical technology. John Wiley & Sons, Inc. https://doi.org/10.1002/0471238961.0114200803150618.a01
  21. Butterworth BE, Mathre OB, Ballinger K (2001) The preparation of anthraquinone used in the national toxicology program cancer bioassay was contaminated with the mutagen 9-nitroanthracene. Mutagenesis 16:169-177. https://doi.org/10.1093/mutage/16.2.169
  22. Butterworth BE, Mathre OB, Ballinger KE, Adalsteinsson O (2004) Contamination is a frequent confounding factor in toxicology studies with anthraquinone and related compounds. Int J Toxicol 23:335-344. https://doi.org/10.1080/10915810490517072
  23. Walker G, Weatherley L (2000) Biodegradation and biosorption of acid anthraquinone dye. Environ Pollut 108:219-223. https://doi.org/10.1016/s0269-7491(99)00187-6
  24. Li H-h, Wang Y-t, Wang Y, Wang H-x, Sun K-k, Lu Z (2019). Bacterial degradation of anthraquinone dyes. J Zhejiang University-Science B 20:528-540. https://doi.org/10.1631/jzus.b1900165
  25. Bien HS, Stawitz J, Wunderlich K (2000) Anthraquinone dyes and intermediates. In: Elvers B (ed) Ullmann's encyclopedia of industrial chemistry. John Wiley & Sons, Inc. https://doi.org/10.1002/14356007.a02_355
  26. Berkessa YW, Yan B, Li T, Jegatheesan V, Zhang Y (2020) Treatment of anthraquinone dye textile wastewater using anaerobic dynamic membrane bioreactor: performance and microbial dynamics. Chemosphere 238:124539. https://doi.org/10.1016/j.chemosphere.2019.124539
  27. Werner SJ, Linz GM, Carlson JC, Pettit SE, Tupper SK, Santer MM (2011) Anthraquinone-based bird repellent for sunflower crops. Appl Anim Behav Sci 129:162-169. https://doi.org/10.1016/j.applanim.2010.11.010
  28. Werner SJ, Carlson JC, Tupper SK, Santer MM, Linz GM (2009) Threshold concentrations of an anthraquinone-based repellent for canada geese, red-winged blackbirds, and ring-necked pheasants. Appl Anim Behav Sci 121:190-196. https://doi.org/10.1016/j.applanim.2009.09.016
  29. Curtis PD, Wise KL, Cummings J, Gabriel AD, Ganoe K, Miller JJ, Hunter ME, O'Neil KA, Lawrence JR, Cerosaletti PE et al (2019) Field evaluation of anthraquinone treatment to reduce corn seedling damage by birds. Crop Prot 123:59-62. https://doi.org/10.1016/j.cropro.2019.05.021
  30. DeLiberto ST, Werner SJ (2016) Review of anthraquinone applications for pest management and agricultural crop protection. Pest Manag Sci 72:1813-1825. https://doi.org/10.1002/ps.4330
  31. Ahmad S, Saleem Z, Jabeen F, Hussain B, Sultana T, Sultana S, Al-Ghanim KA, Al-Mulhim NMA, Mahboob S (2018) Potential of natural repellents methylanthranilate and anthraquinone applied on maize seeds and seedlings against house sparrow (Passer domesticus) in captivity. Brazilian J Biology 78:667-672. https://doi.org/10.1590/1519-6984.171686
  32. Clark L, Avery ML (2013) Effectiveness of chemical repellents in managing birds at airports. In: DeVault TL, Blackwell BF, Belant JL (eds) Wildlife in airport environments: preventing animal-aircraft collisions through science-based management. Johns Hopkins University Press & The Wildlife Society, Baltimore, pp 25-35. https://doi.org/10.1002/jwmg.735
  33. Werner SJ, DeLiberto ST, Baldwin RA, Witmer GW (2016) Repellent application strategy for wild rodents and cottontail rabbits. Appl Anim Behav Sci 185:95-102. https://doi.org/10.1016/j.applanim.2016.10.008
  34. Baldwin RA, Meinerz R, Witmer GW, Werner SJ (2018) The elusive search for an effective repellent against voles: an assessment of anthraquinone for citrus crops. J Pest Sci 91:1107-1113. https://doi.org/10.1007/s10340-018-0979-8
  35. Hart PW, Rudie AW (2014) Anthraquinone-a review of the rise and fall of a pulping catalyst. Tappi J 13:23-31. https://doi.org/10.32964/tj13.10.23
  36. Vavrous A, Vapenka L, Sosnovcova J, Kejlova K, Vrbik K, Jirova D (2016) Method for analysis of 68 organic contaminants in food contact paper using gas and liquid chromatography coupled with tandem mass spectrometry. Food Control 60:221-229. https://doi.org/10.1016/j.foodcont.2015.07.043
  37. Yang K-R, Seo HS, Lee YS, Choi MH, Hong J (2015) A HT column GC/MS method for the determination of anthraquinone and its toxic impurities in paper products. Anal Methods 7:6060-6065. https://doi.org/10.1039/c5ay01106j
  38. Amosov AS, Ul'yanovskii NV, Kosyakov DS (2019) Simultaneous determination of anthraquinone and bisphenol a in pulp and paper products by high performance liquid chromatography-tandem mass spectrometry. J Anal Chem 74:1089-1095. https://doi.org/10.1134/s1061934819110029
  39. International Agency for Research on Cancer (2011) Anthraquinone IARC monographs 41-70. https://doi.org/10.1093/occmed/kqr127
  40. Han W, Wang S, Li M, Jiang L, Wang X, Xie K (2018) The protective effect of diallyl trisulfide on cytopenia induced by benzene through modulating benzene metabolism. Food Chem Toxicol 112:393-399. https://doi.org/10.1016/j.fct.2017.12.060
  41. Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ (2000) Role of quinones in toxicology. Chem Res Toxicol 13:135-160. https://doi.org/10.1021/tx9902082
  42. Lundstedt S, White PA, Lemieux CL, Lynes KD, Lambert IB, Oberg L, Haglund P, Tysklind M (2007) Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (pahs) at pah-contaminated sites. Ambio 36:475-485. https://doi.org/10.1579/0044-7447(2007)36[475:sfatho]2.0.co;2
  43. Doi AM, Irwin RD, Bucher JR (2005) Influence of functional group substitutions on the carcinogenicity of anthraquinone in rats and mice: analysis of long-term bioassays by the national cancer institute and the national toxicology program. J Toxicol Environ Health B Crit Rev 8:109-126. https://doi.org/10.1080/10937400590909077
  44. Malik EM, Muller CE (2016) Anthraquinones as pharmacological tools and drugs. Med Res Rev 36:705-748. https://doi.org/10.1002/med.21391
  45. Bruins JJ, Albada B, van Delft F (2018) Ortho-quinones and analogues thereof: highly reactive intermediates for fast and selective biofunctionalization. Chem Eur J 24:4749-4756. https://doi.org/10.1002/chem.201703919
  46. Bhakta D, Siva R (2012) Morindone, an anthraquinone, intercalates DNA sans toxicity: a spectroscopic and molecular modeling perspective. Appl Biochem Biotechnol 167:885-896. https://doi.org/10.1007/s12010-012-9744-2
  47. National Toxicology Program (2005) NTP technical report on the toxicology and carcinogenesis studies of anthraquinone (cas no. 84-65-1) in f344/n rats and b6c3f1 mice (feed studies). National Toxicology Program Technical Report Series 494:1-358
  48. Miet K, Albinet A, Budzinski H, Villenave E (2014) Atmospheric reactions of 9,10-anthraquinone. Chemosphere 107:1-6. https://doi.org/10.1016/j.chemosphere.2014.02.050
  49. Wang D, Wang XH, Yu X, Cao F, Cai X, Chen P, Li M, Feng Y, Li H, Wang X (2021) Pharmacokinetics of anthraquinones from medicinal plants. Front Pharmacol 12:638993. https://doi.org/10.3389/fphar.2021.638993
  50. Yang M, Luo F, Zhang X, Wang X, Sun H, Lou Z, Zhou L, Chen Z (2022) Uptake, translocation, and metabolism of anthracene in tea plants. Sci Total Environ 821:152905. https://doi.org/10.1016/j.scitotenv.2021.152905
  51. Hammel KE, Green B, Gai WZ (1991) Ring fission of anthracene by a eukaryote. Proc Natl Acad Sci USA 88:10605-10608. https://doi.org/10.1073/pnas.88.23.10605
  52. Wei Y, Han I-K, Hu M, Shao M, Zhang JJ, Tang X (2010) Personal exposure to particulate pahs and anthraquinone and oxidative DNA damages in humans. Chemosphere 81:1280-1285. https://doi.org/10.1016/j.chemosphere.2010.08.055
  53. Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2'-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:120-139. https://doi.org/10.1080/10590500902885684
  54. Barbee GC, Santer MM, McClain WR (2010) Lack of acute toxicity of an anthraquinone bird repellent to non-target crayfish (Procambarus clarkii) associated with rice-crayfish crop rotations. Crop Prot 29:506-508. https://doi.org/10.1016/j.cropro.2009.10.013
  55. Lampi MA, Gurska J, McDonald KIC, Xie F, Huang X-D, Dixon DG, Greenberg BM (2006) Photoinduced toxicity of polycyclic aromatic hydrocarbons to Daphnia magna: Ultraviolet-mediated effects and the toxicity of polycyclic aromatic hydrocarbon photoproducts. Environ Toxicol 25:1079-1087. https://doi.org/10.1897/05-276r.1
  56. Brack W, Altenburger R, Kuster E, Meissner B, Wenzel K-D, Schuurmann G (2003) Identification of toxic products of anthracene photomodifcation in simulated sunlight. Environ Toxicol Chem: An Int J 22:2228-2237. https://doi.org/10.1897/02-450
  57. Kolpin DW, Skopec M, Meyer MT, Furlong ET, Zaugg SD (2004) Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions. Sci Total Environ 328:119-130. https://doi.org/10.1016/j.scitotenv.2004.01.015
  58. Kurihara R, Shiraishi F, Tanaka N, Hashimoto S (2005) Presence and estrogenicity of anthracene derivatives in coastal japanese waters. Environ Toxicol Chem 24:1984-1993. https://doi.org/10.1897/04-310r.1
  59. Machala M, Ciganek M, Blaha L, Minksova K, Vondrack J (2001) Aryl hydrocarbon receptor-mediated and estrogenic activities of oxygenated polycyclic aromatic hydrocarbons and azaarenes originally identified in extracts of river sediments. Environ Toxicol Chem 20:2736-2743. https://doi.org/10.1002/etc.5620201212
  60. Coutino-Gonzalez E, Hernandez-Carlos B, Gutierrez-Ortiz R, Dendooven L (2010) The earthworm eisenia fetida accelerates the removal of anthracene and 9, 10-anthraquinone, the most abundant degradation product, in soil. Int Biodeterior Biodegrad 64:525-529. https://doi.org/10.1016/j.ibiod.2010.05.002
  61. Musa Bandowe BA, Shukurov N, Kersten M, Wilcke W (2010) Polycyclic aromatic hydrocarbons (PAHs) and their oxygen-containing derivatives (OPAHs) in soils from the angren industrial area, uzbekistan. Environ Pollut 158:2888-2899. https://doi.org/10.1016/j.envpol.2010.06.012
  62. Layshock JA, Wilson G, Anderson KA (2010) Ketone and qui-none-substituted polycyclic aromatic hydrocarbons in mussel tissue, sediment, urban dust, and diesel particulate matrices. Environ Toxicol Chem 29:2450-2460. https://doi.org/10.1002/etc.301
  63. Albinet A, Leoz-Garziandia E, Budzinski H, ViIlenave E (2006) Simultaneous analysis of oxygenated and nitrated polycyclic aromatic hydrocarbons on standard reference material 1649a (urban dust) and on natural ambient air samples by gas chromatography-mass spectrometry with negative ion chemical ionisation. J Chromatogr A 1121:106-113. https://doi.org/10.1016/j.chroma.2006.04.043
  64. Sienra MR (2006) Oxygenated polycyclic aromatic hydrocarbons in urban air particulate matter. Atmos Environ 40:2374-2384. https://doi.org/10.1016/j.atmosenv.2005.12.009
  65. Zhao T, Yang L, Huang Q, Zhang Y, Bie S, Li J, Zhang W, Duan S, Gao H, Wang W (2020) PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and their derivatives (nitrated-PAHs and oxygenated-pahs) in a road tunnel located in qingdao, china: characteristics, sources and emission factors. Sci Total Environ 720:137521. https://doi.org/10.1016/j.scitotenv.2020.137521
  66. Zhao J, Zhang J, Sun L, Liu Y, Lin Y, Li Y, Wang T, Mao H (2018) Characterization of PM2.5-bound nitrated and oxygenated polycyclic aromatic hydrocarbons in ambient air of langfang during periods with and without trafc restriction. Atmos Res 213:302-308. https://doi.org/10.1016/j.atmosres.2018.06.015
  67. Vapenka L, Vavrous A, Votavova L, Kejlova K, Dobias J, Sosnovcova J (2016) Contaminants in the paper-based food packaging materials used in the Czech Republic. J Food Nutr Res 55:361-373. https://doi.org/10.1080/02652030903225765
  68. Lammel G, Kitanovski Z, Kukucka P, Novak J, Arangio AM, Codling GP, Filippi A, Hovorka J, Kuta J, Leoni C et al (2020) Oxygenated and nitrated polycyclic aromatic hydrocarbons in ambient air-levels, phase partitioning, mass size distributions, and inhalation bioaccessibility. Environ Sci Technol 54:2615-2625. https://doi.org/10.1021/acs.est.9b06820
  69. Bhunia K, Sablani SS, Tang J, Rasco B (2013) Migration of chemical compounds from packaging polymers during microwave, conventional heat treatment, and storage. Compr Rev Food Sci Food Saf 12:523-545. https://doi.org/10.1111/1541-4337.12028
  70. Food Packaging Forum Foundation. Food packaging materials. http://www.foodpackagingforum.org/Food-Packaging-Health/Food-Packaging-Materials. Accessed 4 Sept 2023.
  71. Molin RF, Dartora N, Borges ACP, Goncalves IL, Di Luccio M, Valduga AT (2014) Total phenolic contents and antioxidant activity in oxidized leaves of mate (Ilex paraguariensis St. Hil). Brazilian Archives of Biology and Technology 57:997-1003. https://doi.org/10.1590/s1516-8913201402305
  72. Goncalves IL, Dartora N, Piovezan Borges AC, Picolo AP, Dallago RM, de Mera L, Valduga AT (2015) Accelerated maturation of processed yerba-mate under the controlled conditions of temperature and humidity. Nutr Food Sci 45:564-573. https://doi.org/10.1108/nfs-12-2014-0105
  73. Lewinski CS, Goncalves IL, Piovezan Borges AC, Dartora N, de Mera L, Valduga AT (2015) Efects of uv light on the physic-chemical properties of yerba-mate. Nutr Food Sci 45:221-228. https://doi.org/10.1108/nfs-07-2014-0065
  74. Valduga AT, Goncalves IL, Magri E, Delalibera Finzer JR (2019) Chemistry, pharmacology and new trends in traditional functional and medicinal beverages. Food Res Int 120:478-503. https://doi.org/10.1016/j.foodres.2018.10.091
  75. Zamora R, Hidalgo FJ (2021) Formation of naphthoquinones and anthraquinones by carbonyl-hydroquinone/benzoquinone reactions: a potential route for the origin of 9,10-anthraquinone in tea. Food Chem 354:129530. https://doi.org/10.1016/j.foodchem.2021.129530
  76. Mauldin RE, Primus TM, Volz SA, Kimball BA, Johnston JJ, Cummings JL, York DL (2002) Determination of anthraquinone in technical material, formulations, and lettuce by high performance liquid chromatography. J Agric Food Chem 50:3632-3636. https://doi.org/10.1021/jf0113878
  77. Guinez M, Bazan C, Martinez LD, Cerutti S (2018) Determination of nitrated and oxygenated polycyclic aromatic hydrocarbons in water samples by a liquid-liquid phase microextraction procedure based on the solidification of a floating organic drop followed by solvent assisted back-extraction and liquid chromatography-tandem mass spectrometry. Microchem J 139:164-173. https://doi.org/10.1016/j.microc.2018.02.027
  78. Federal Institute for Risk Assessment. BfR removes anthraquinone from its list of recommendations for food packaging. http://www.bfr.bund.de/cm/349/bfr-removes-anthraquinone-from-its-list-ofrecommandations-for-food-packaging.pdf
  79. Union European (2014) Commission regulation (E.U) no 1146/2014. Of J Eur Union. https://doi.org/10.5040/9781509909568.0013
  80. Codex Alimentarius International Food Standards (2018) Maximum residue limits (MRLs) and risk management recommendations (RMRs) for residues of veterinary drugs in foods. FAO publication, Italy