DOI QR코드

DOI QR Code

GEOMETRY OF THE MODULI SPACE OF HIGGS PAIRS ON AN IRREDUCIBLE NODAL CURVE OF ARITHMETIC GENUS ONE

  • Sang-Bum Yoo (Department of Mathematics Education Gongju National University of Education)
  • 투고 : 2023.05.30
  • 심사 : 2023.10.25
  • 발행 : 2024.01.01

초록

We describe the moduli space of Higgs pairs on an irreducible nodal curve of arithmetic genus one and its geometric structures in terms of the Hitchin map and a flat degeneration of the moduli space of Higgs bundles on an elliptic curve.

키워드

참고문헌

  1. E. Arbarello, M. Cornalba, and P. A. Griffiths, Geometry of Algebraic Curves, SpringerVerlag, Berlin, Heidelberg, 2011.
  2. M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), no. 1, 414-452. https://doi.org/10.1112/plms/s3-7.1.414
  3. V. Balaji, P. Barik, and D. S. Nagaraj, A degeneration of moduli of Hitchin pairs, Int. Math. Res. Not. 2016 (2016), no. 21, 6581-6625. https://doi.org/10.1093/imrn/rnv356
  4. S. Basu and S. Das, A Torelli type theorem for nodal curves, Internat. J. Math. 32 (2021), no. 7, Paper No. 2150041, 23 pp. https://doi.org/10.1142/S0129167X21500415
  5. U. N. Bhosle, Generalised parabolic bundles and applications to torsionfree sheaves on nodal curves, Ark. Mat. 30 (1992), no. 1-2, 187-215. https://doi.org/10.1007/BF02384869
  6. U. N. Bhosle, Generalized parabolic Hitchin pairs, J. Lond. Math. Soc. (2) 89 (2014), no. 1, 1-23. https://doi.org/10.1112/jlms/jdt058
  7. U. N. Bhosle and I. Biswas, Torsionfree sheaves over a nodal curve of arithmetic genus one, Proc. Indian Acad. Sci. Math. Sci. 118 (2008), no. 1, 81-98. https://doi.org/10.1007/s12044-008-0005-9
  8. E. Franco, O. Garc'ia-Prada, and P. E. Newstead, Higgs bundles over elliptic curves, Illinois J. Math. 58 (2014), no. 1, 43-96. http://projecteuclid.org/euclid.ijm/1427897168
  9. D. Gieseker, A degeneration of the moduli space of stable bundles, J. Differential Geom. 19 (1984), no. 1, 173-206. http://projecteuclid.org/euclid.jdg/1214438427
  10. R. Hartshorne, Algebraic Geometry, Springer-Verlag, New-York, 1977.
  11. T. Hausel and M. Thaddeus, Mirror symmetry, Langlands duality, and the Hitchin system, Invent. Math. 153 (2003), no. 1, 197-229. https://doi.org/10.1007/s00222-003-0286-7
  12. D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg, Braunschweig, 1997.
  13. D. S. Nagaraj and C. S. Seshadri, Degenerations of the moduli spaces of vector bundles on curves. II. Generalized Gieseker moduli spaces, Proc. Indian Acad. Sci. Math. Sci. 109 (1999), no. 2, 165-201. https://doi.org/10.1007/BF02841533
  14. N. Nitsure, Moduli space of semistable pairs on a curve, Proc. London Math. Soc. (3) 62 (1991), no. 2, 275-300. https://doi.org/10.1112/plms/s3-62.2.275
  15. C. S. Seshadri, Fibres vectoriels sur les courbes algebriques, Asterisque, 96, Societe Mathematique de France, Paris, 1982.
  16. C. T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. I, Publ. Math. Inst. Hautes Etudes Sci. No. 79 (1994), 47-129.
  17. X. Sun, Degeneration of moduli spaces and generalized theta functions, J. Algebraic Geom. 9 (2000), no. 3, 459-527.
  18. M. Thaddeus, Mirror symmetry, Langlands duality, and commuting elements of Lie groups, Int. Math. Res. Not. 2001 (2001), no. 22, 1169-1193. https://doi.org/10.1155/S1073792801000551
  19. L. W. Tu, Semistable bundles over an elliptic curve, Adv. Math. 98 (1993), no. 1, 1-26. https://doi.org/10.1006/aima.1993.1011