DOI QR코드

DOI QR Code

GORENSTEIN FPn-INJECTIVE MODULES WITH RESPECT TO A SEMIDUALIZING BIMODULE

  • Zhiqiang Cheng ( Department of Mathematics Hangzhou Dianzi University and College of Information Science and Technology/Cyber Security Jinan University) ;
  • Guoqiang Zhao (Department of Mathematics Hangzhou Dianzi University)
  • 투고 : 2022.08.08
  • 심사 : 2023.10.19
  • 발행 : 2024.01.01

초록

Let S and R be rings and SCR a semidualizing bimodule. We introduce the notion of GC-FPn-injective modules, which generalizes GC-FP-injective modules and GC-weak injective modules. The homological properties and the stability of GC-FPn-injective modules are investigated. When S is a left n-coherent ring, several nice properties and new Foxby equivalences relative to GC-FPn-injective modules are given.

키워드

과제정보

This work was financially supported by NSFC (12061026).

참고문헌

  1. V. Becerril, O. Mendoza, and V. Santiago, Relative Gorenstein objects in abelian categories, Comm. Algebra 49 (2021), no. 1, 352-402. https://doi.org/10.1080/00927872.2020.1800023 
  2. D. Bravo, J. Gillespie, and M. Hovey, The stable module category of a general ring, arXiv:1405.5768, 2014. 
  3. D. Bravo and M. A. P'erez, Finiteness conditions and cotorsion pairs, J. Pure Appl. Algebra 221 (2017), no. 6, 1249-1267. https://doi.org/10.1016/j.jpaa.2016.09.008 
  4. E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611-633. https://doi.org/10.1007/BF02572634 
  5. E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, De Gruyter, Berlin, 2001. 
  6. Z. Gao and Z. Huang, Weak injective covers and dimension of modules, Acta Math. Hungar. 147 (2015), no. 1, 135-157. https://doi.org/10.1007/s10474-015-0540-7 
  7. Z. Gao, X. Ma, and T. Zhao, Gorenstein weak injective modules with respect to a semidualizing bimodule, J. Korean Math. Soc. 55 (2018), no. 6, 1389-1421. https://doi.org/10.4134/JKMS.j170718 
  8. Z. Gao and F. Wang, Weak injective and weak flat modules, Comm. Algebra 43 (2015), no. 9, 3857-3868. https://doi.org/10.1080/00927872.2014.924128 
  9. H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167-193. https://doi.org/10.1016/j.jpaa.2003.11.007 
  10. H. Holm and P. Jorgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra 205 (2006), no. 2, 423-445. https://doi.org/10.1016/j.jpaa.2005.07.010 
  11. H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47 (2007), no. 4, 781-808. https://doi.org/10.1215/kjm/1250692289 
  12. J. Hu and D. Zhang, Weak AB-context for FP-injective modules with respect to semidualizing modules, J. Algebra Appl. 12 (2013), no. 7, 1350039, 17 pp. https://doi.org/10.1142/S0219498813500394 
  13. K. Sather-Wagstaff, T. Sharif, and D. M. White, AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules, Algebr. Represent. Theory 14 (2011), no. 3, 403-428. https://doi.org/10.1007/s10468-009-9195-9 
  14. B. Stenstrom, Coherent rings and F P-injective modules, J. London Math. Soc. (2) 2 (1970), 323-329. https://doi.org/10.1112/jlms/s2-2.2.323 
  15. D. White, Gorenstein projective dimension with respect to a semidualizing module, J. Commut. Algebra 2 (2010), no. 1, 111-137. https://doi.org/10.1216/JCA-2010-2-1-111 
  16. W. Wu and Z. Gao, FPn-injective and FPn-flat modules with respect to a semidualizing bimodule, Comm. Algebra 50 (2022), no. 2, 583-599. https://doi.org/10.1080/00927872.2021.1962899 
  17. Z. Zhu, C-coherent rings, C-semihereditary rings and C-regular rings, Studia Sci. Math. Hungar. 50 (2013), no. 4, 491-508. https://doi.org/10.1556/SScMath.50.2013.4.1256