DOI QR코드

DOI QR Code

PERIODIC SURFACE HOMEOMORPHISMS AND CONTACT STRUCTURES

  • Dheeraj Kulkarni (Department of Mathematics Indian Institute of Science Education and Research Bhopal) ;
  • Kashyap Rajeevsarathy (Department of Mathematics Indian Institute of Science Education and Research Bhopal) ;
  • Kuldeep Saha (Institute for Advancing Intelligence (IAI) TCG-CREST)
  • 투고 : 2022.05.19
  • 심사 : 2023.09.22
  • 발행 : 2024.01.01

초록

In this article, we associate a contact structure to the conjugacy class of a periodic surface homeomorphism, encoded by a combinatorial tuple of integers called a marked data set. In particular, we prove that infinite families of these data sets give rise to Stein fillable contact structures with associated monodromies that do not factor into products to positive Dehn twists. In addition to the above, we give explicit constructions of symplectic fillings for rational open books analogous to Mori's construction for honest open books. We also prove a sufficient condition for the Stein fillability of rational open books analogous to the positivity of monodromy for honest open books due to Giroux and Loi-Piergallini.

키워드

과제정보

The work in this article is supported by the grant EMR/2017/000727 by SERB, Government of India. The first author would also like to thank James Conway for noting an error in the earlier draft of the article and for helpful conversations. The authors thank the referees for numerous suggestions to improve exposition and clarity.

참고문헌

  1. K. L. Baker, J. B. Etnyre, and J. Van Horn-Morris, Cabling, contact structures and mapping class monoids, J. Differential Geom. 90 (2012), no. 1, 1-80. http://projecteuclid. org/euclid.jdg/1335209489
  2. J. A. Baldwin and J. B. Etnyre, Admissible transverse surgery does not preserve tightness, Math. Ann. 357 (2013), no. 2, 441-468. https://doi.org/10.1007/s00208-013-0911-8
  3. V. Colin and K. Honda, Reeb vector fields and open book decompositions, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 2, 443-507. https://doi.org/10.4171/JEMS/365
  4. N. K. Dhanwani, A. K. Nair, and K. Rajeevsarathy, Factoring periodic maps into Dehn twists, J. Pure Appl. Algebra 227 (2023), no. 1, Paper No. 107159, 33 pp. https://doi.org/10.1016/j.jpaa.2022.107159
  5. J. Gilman, Structures of elliptic irreducible subgroups of the modular group, Proc. London Math. Soc. (3) 47 (1983), no. 1, 27-42. https://doi.org/10.1112/plms/s3-47.1.27
  6. E. Giroux, Geometrie de contact: de la dimension trois vers les dimensions sup'erieures, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 405-414, Higher Ed. Press, Beijing, 2002.
  7. K. Honda, W. H. Kazez, and G. Matic, Right-veering diffeomorphisms of compact surfaces with boundary. II, Geom. Topol. 12 (2008), no. 4, 2057-2094. https://doi.org/10.2140/gt.2008.12.2057
  8. S. P. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), no. 2, 235-265. https://doi.org/10.2307/2007076
  9. A. Loi and R. Piergallini, Compact Stein surfaces with boundary as branched covers of B4, Invent. Math. 143 (2001), no. 2, 325-348. https://doi.org/10.1007/s002220000106
  10. A. Mori, A note on Thurston-Winkelnkemper's construction of contact forms on 3-manifolds, Osaka J. Math. 39 (2002), no. 1, 1-11. http://projecteuclid.org/euclid.ojm/1153492643
  11. S. Parsad, K. Rajeevsarathy, and B. Sanki, Geometric realizations of cyclic actions on surfaces, J. Topol. Anal. 11 (2019), no. 4, 929-964. https://doi.org/10.1142/s1793525319500365
  12. F. Quinn, Open book decompositions, and the bordism of automorphisms, Topology 18 (1979), no. 1, 55-73. https://doi.org/10.1016/0040-9383(79)90014-4
  13. K. Rajeevsarathy and P. Vaidyanathan, Roots of Dehn twists about multicurves, Glasg. Math. J. 60 (2018), no. 3, 555-583. https://doi.org/10.1017/S0017089517000283
  14. W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417-431. https://doi.org/10.1090/S0273-0979-1988-15685-6
  15. W. P. Thurston and H. E. Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc. 52 (1975), 345-347. https://doi.org/10.2307/2040160
  16. H. E. Winkelnkemper, Manifolds as open books, Bull. Amer. Math. Soc. 79 (1973), 45-51. https://doi.org/10.1090/S0002-9904-1973-13085-X