DOI QR코드

DOI QR Code

Optimum solar energy harvesting system using artificial intelligence

  • Received : 2022.05.12
  • Accepted : 2022.08.24
  • Published : 2023.12.10

Abstract

Renewable energy is promoted massively to overcome problems that fossil fuel power plants generate. One popular renewable energy type that offers easy installation is a photovoltaic (PV) system. However, the energy harvested through a PV system is not optimal because influenced by exposure to solar irradiance in the PV module, which is constantly changing caused by weather. The maximum power point tracking (MPPT) technique was developed to maximize the energy potential harvested from the PV system. This paper presents the MPPT technique, which is operated on a new high-gain voltage DC/DC converter that has never been tested before for the MPPT technique in PV systems. Fuzzy logic (FL) was used to operate the MPPT technique on the converter. Conventional and adaptive perturb and observe (P&O) techniques based on variables step size were also used to operate the MPPT. The performance generated by the FL algorithm outperformed conventional and variable step-size P&O. It is evident that the oscillation caused by the FL algorithm is more petite than variables step-size and conventional P&O. Furthermore, FL's tracking speed algorithm for tracking MPP is twice as fast as conventional P&O.

Keywords

References

  1. L. Xiaoping, Q. Yunyou, and S. SaeidNahaei, A novel maximum power point tracking in partially shaded PV systems using a hybrid method, Int. J. Hydrogen Energy 46 (2021), 37351-37366. https://doi.org/10.1016/j.ijhydene.2021.08.202
  2. I. Dincer, Renewable energy and sustainable development: A crucial review, Renew. Sustain. Energy Rev. 4 (2000), 157-175. https://doi.org/10.1016/S1364-0321(99)00011-8
  3. A. Chatterjee, K. Mohanty, V. S. Kommukuri, and K. Thakre, Design and experimental investigation of digital model predictive current controller for single phase grid integrated photovoltaic systems, Renew. Energy 108 (2017), 438-448. https://doi.org/10.1016/j.renene.2017.02.057
  4. R. Gross, M. Leach, and A. Bauen, Progress in renewable energy, Environ. Int. 29 (2003), 105-122. https://doi.org/10.1016/S0160-4120(02)00130-7
  5. M. AlShabi, C. Ghenai, M. Bettayeb, and F. F. Ahmad, Estimating one-diode-PV model using autonomous groups particle swarm optimization, IAES Int. J. Artif. Intell. 10 (2021), no. 1, 166-174.
  6. M. AlShabi, C. Ghenai, M. Bettayeb, F. F. Ahmad and M. El Haj Assad, Estimating pv models using multi-group salp swarm algorithm, IAES Int. J. Artif. Intell. 10 (2021), no. 2, 398-406.
  7. M. Bahrami, R. Gavagsaz-Ghoachani, M. Zandi, M. Phattanasak, G. Maranzanaa, B. Nahid-Mobarakeh, S. Pierfederici, and F. Meibody-Tabar, Hybrid maximum power point tracking algorithm with improved dynamic performance, Renew. Energy 130 (2019), 982-991. https://doi.org/10.1016/j.renene.2018.07.020
  8. A. O. Baba, G. Liu, and X. Chen, Classification and evaluation review of maximum power point tracking methods, Sustain. Futur. 2 (2020), 100020.
  9. S. Dubey, J. N. Sarvaiya, and B. Seshadri, Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world-a review, Energy Procedia 33 (2013), 311-321. https://doi.org/10.1016/j.egypro.2013.05.072
  10. A. A. Abdulrazzaq and A. H. Ali, Efficiency performances of two MPPT algorithms for PV system with different solar panels irradiances, Int. J. Power Electron. Drive Syst. 9 (2018), no. 4, 1755-1764.
  11. E. Roman, R. Alonso, P. Ibanez, S. Elorduizapatarietxe, and D. Goitia, Intelligent PV module for grid-connected PV systems, IEEE Trans. Ind. Electron. 53 (2006), 1066-1073. https://doi.org/10.1109/TIE.2006.878327
  12. S. D. Al-Majidi, M. F. Abbod, and H. S. Al-Raweshidy, A novel maximum power point tracking technique based on fuzzy logic for photovoltaic systems, Int. J. Hydrogen Energy 43 (2018), 14158-14171. https://doi.org/10.1016/j.ijhydene.2018.06.002
  13. J. Ahmed and Z. Salam, An enhanced adaptive P&O MPPT for fast and efficient tracking under varying environmental conditions, IEEE Trans. Sustain. Energy 9 (2018), 1487-1496. https://doi.org/10.1109/TSTE.2018.2791968
  14. A.-R. Youssef, H. H. H. Mousa, and E. E. M. Mohamed, Development of self-adaptive P&O MPPT algorithm for wind generation systems with concentrated search area, Renew. Energy 154 (2020), 875-893. https://doi.org/10.1016/j.renene.2020.03.050
  15. M. Abdel-Salam, M. T. El-Mohandes, and M. El-Ghazaly, An efficient tracking of MPP in PV systems using a newlyformulated P&O-MPPT method under varying irradiation levels, J. Electr. Eng. Technol. 15 (2020), 501-513. https://doi.org/10.1007/s42835-019-00283-x
  16. M. N. Ali, K. Mahmoud, M. Lehtonen, and M. M. F. Darwish, An efficient fuzzy-logic based variable-step incremental conductance MPPT method for grid-connected PV systems, IEEE Access 9 (2021), 26420-26430.
  17. A. K. Gupta, R. K. Pachauri, T. Maity, Y. K. Chauhan, O. P. Mahela, B. Khan, and P. K. Gupta, Effect of various incremental conductance MPPT methods on the charging of battery load feed by solar panel, IEEE Access 9 (2021), 90977-90988. https://doi.org/10.1109/ACCESS.2021.3091502
  18. H. Shahid, M. Kamran, Z. Mehmood, M. Y. Saleem, M. Mudassar, and K. Haider, Implementation of the novel temperature controller and incremental conductance MPPT algorithm for indoor photovoltaic system, Sol. Energy 163 (2018), 235-242. https://doi.org/10.1016/j.solener.2018.02.018
  19. V. Jately, B. Azzopardi, J. Joshi, A. Sharma, and S. Arora, Experimental analysis of hill-climbing MPPT algorithms under low irradiance levels, Renew. Sustain. Energy Rev. 150 (2021), 111467.
  20. W. Zhu, L. Shang, P. Li, and H. Guo, Modified hill climbing MPPT algorithm with reduced steady-state oscillation and improved tracking efficiency, J. Eng. 2018 (2018), 1878-1883.
  21. C. B. N. Fapi, P. Wira, M. Kamta, A. Badji, and H. Tchakounte, Real-time experimental assessment of hill climbing MPPT algorithm enhanced by estimating a duty cycle for PV system, Int. J. Renew. Energy Res. 9 (2019), no. 3, 1180-1189.
  22. N. Kumar, B. Singh, and B. K. Panigrahi, LLMLF-based control approach and LPO MPPT technique for improving performance of a multifunctional three-phase two-stage grid integrated PV system, IEEE Trans. Sustain. Energy 11 (2019), 371-380. https://doi.org/10.1109/TSTE.2019.2891558
  23. N. Kumar, B. Singh, and B. K. Panigrahi, Integration of solar PV with low-voltage weak grid system: Using maximize-M Kalman filter and self-tuned P&O algorithm, IEEE Trans. Ind. Electron. 66 (2019), 9013-9022. https://doi.org/10.1109/TIE.2018.2889617
  24. N. Kumar, B. Singh, B. K. Panigrahi, and L. Xu, Leaky-least-logarithmic-absolute-difference-based control algorithm and learning-based InC MPPT technique for grid-integrated PV system, IEEE Trans. Ind. Electron. 66 (2019), 9003-9012. https://doi.org/10.1109/TIE.2018.2890497
  25. N. Kumar, B. Singh, B. K. Panigrahi, C. Chakraborty, H. M. Suryawanshi, and V. Verma, Integration of solar PV with lowvoltage weak grid system: Using normalized laplacian kernel adaptive kalman filter and learning based InC algorithm, IEEE Trans. Power Electron. 34 (2019), 10746-10758. https://doi.org/10.1109/TPEL.2019.2898319
  26. N. Kumar, B. Singh, J. Wang, and B. K. Panigrahi, A framework of L-HC and AM-MKF for accurate harmonic supportive control schemes, IEEE Trans. Circuits Syst. I Regul. Pap. 67 (2020), 5246-5256. https://doi.org/10.1109/TCSI.2020.2996775
  27. H. Rezk, M. Aly, M. Al-Dhaifallah, and M. Shoyama, Design and hardware implementation of new adaptive fuzzy logic-based MPPT control method for photovoltaic applications, IEEE Access 7 (2019), 106427-106438.
  28. S. Farajdadian and S. M. H. Hosseini, Optimization of fuzzy-based MPPT controller via metaheuristic techniques for standalone PV systems, Int. J. Hydrogen Energy 44 (2019), 25457-25472. https://doi.org/10.1016/j.ijhydene.2019.08.037
  29. X. Li, H. Wen, Y. Hu, and L. Jiang, A novel beta parameter based fuzzy-logic controller for photovoltaic MPPT application, Renew. Energy 130 (2019), 416-427. https://doi.org/10.1016/j.renene.2018.06.071
  30. U. Yilmaz, A. Kircay, and S. Borekci, PV system fuzzy logic MPPT method and PI control as a charge controller, Renew. Sustain. Energy Rev. 81 (2018), 994-1001. https://doi.org/10.1016/j.rser.2017.08.048
  31. X. Ge, F. W. Ahmed, A. Rezvani, N. Aljojo, S. Samad, and L. K. Foong, Implementation of a novel hybrid BAT-fuzzy controller based MPPT for grid-connected PV-battery system, Control Eng. Pract. 98 (2020), 104380.
  32. R. B. Roy, M. Rokonuzzaman, N. Amin, M. K. Mishu, S. Alahakoon, S. Rahman, N. Mithulananthan, K. S. Rahman, M. Shakeri, and J. Pasupuleti, A comparative performance analysis of ANN algorithms for MPPT energy harvesting in solar PV system, IEEE Access 9 (2021), 102137-102152. https://doi.org/10.1109/ACCESS.2021.3096864
  33. B. Babes, A. Boutaghane, and N. Hamouda, A novel natureinspired maximum power point tracking (MPPT) controller based on ACO-ANN algorithm for photovoltaic (PV) system fed arc welding machines, Neural Comput. Applic. 34 (2022), 299-317. https://doi.org/10.1007/s00521-021-06393-w
  34. K. J. Reddy and N. Sudhakar, ANFIS-MPPT control algorithm for a PEMFC system used in electric vehicle applications, Int. J. Hydrogen Energy 44 (2019), 15355-15369. https://doi.org/10.1016/j.ijhydene.2019.04.054
  35. K. Amara, A. Fekik, D. Hocine, M. L. Bakir, E. -B. Bourennane, T. A. Malek, and A. Malek, Improved performance of a PV solar panel with adaptive neuro fuzzy inference system ANFIS based MPPT, (2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France), 2018, pp. 1098-1101.
  36. A. A. Aldair, A. A. Obed, and A. F. Halihal, Design and implementation of ANFIS-reference model controller based MPPT using FPGA for photovoltaic system, Renew. Sustain. Energy Rev. 82 (2018), 2202-2217. https://doi.org/10.1016/j.rser.2017.08.071
  37. M. Birane, C. Larbes, and A. Cheknane, Comparative study and performance evaluation of central and distributed topologies of photovoltaic system, Int. J. Hydrogen Energy 42 (2017), 8703-8711. https://doi.org/10.1016/j.ijhydene.2016.09.192
  38. Z. Salam, J. Ahmed, and B. S. Merugu, The application of soft computing methods for MPPT of PV system: A technological and status review, Appl. Energy 107 (2013), 135-148. https://doi.org/10.1016/j.apenergy.2013.02.008
  39. S. Ozdemir, N. Altin, and I. Sefa, Fuzzy logic based MPPT controller for high conversion ratio quadratic boost converter, Int. J. Hydrogen Energy 42 (2017), 17748-17759. https://doi.org/10.1016/j.ijhydene.2017.02.191
  40. N. Zhang, D. Sutanto, K. M. Muttaqi, B. Zhang, and D. Qiu, High-voltage-gain quadratic boost converter with voltage multiplier, IET Power Electron. 8 (2015), 2511-2519. https://doi.org/10.1049/iet-pel.2014.0767
  41. P. Saadat and K. Abbaszadeh, A single-switch high step-up DC-DC converter based on quadratic boost, IEEE Trans. Ind. Electron. 63 (2016), 7733-7742. https://doi.org/10.1109/TIE.2016.2590991
  42. A. C. Subrata, T. Sutikno, S. Padmanaban, and H. S. Purnama, Maximum power point tracking in pv arrays with high gain DC-DC boost converter, in International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2019.
  43. X. Zhang, Y. Hu, W. Mao, T. Zhao, M. Wang, F. Liu, and R. Cao, A grid-supporting strategy for cascaded H-bridge PV converter using VSG algorithm with modular active power reserve, IEEE Trans. Ind. Electron. 68 (2020), 186-197. https://doi.org/10.1109/TIE.2019.2962492
  44. Y. Pan, A. Sangwongwanich, Y. Yang, and F. Blaabjerg, A phase-shifting MPPT to mitigate interharmonics from cascaded H-bridge PV inverters, IEEE Trans. Ind. Appl. 57 (2020), 3052-3063. https://doi.org/10.1109/TIA.2020.3000969
  45. S. Srinivasan, R. Tiwari, M. Krishnamoorthy, M. P. Lalitha, and K. K. Raj, Neural network based MPPT control with reconfigured quadratic boost converter for fuel cell application, Int. J. Hydrogen Energy 46 (2021), 6709-6719. https://doi.org/10.1016/j.ijhydene.2020.11.121
  46. K. Kumar, S. R. Kiran, T. Ramji, S. Saravanan, P. Pandiyan, and N. Prabaharan, Performance evaluation of photo voltaic system with quadratic boost converter employing with MPPT control algorithms, Int. J. Renew. Energy Res. 10 (2020), 1083-1091.
  47. S. K. Manas and B. Bhushan, Performance Analysis of Fuzzy Logic-Based MPPT Controller for Solar PV System Using Quadratic Boost Converter, In Advances in energy technology, Springer, 2022, 69-79.
  48. P. A. Dahono, Derivation of high voltage-gain step-up DC-DC power converters, Int. J. Electr. Eng. Informatics 11 (2019).
  49. A. R. Jordehi, Parameter estimation of solar photovoltaic (PV) cells: A review, Renew. Sustain. Energy Rev. 61 (2016), 354-371. https://doi.org/10.1016/j.rser.2016.03.049
  50. M. A. Green, Accuracy of analytical expressions for solar cell fill factors, Sol. Cells 7 (1982), 337-340. https://doi.org/10.1016/0379-6787(82)90057-6
  51. M. G. Batarseh and M. E. Za'ter, Hybrid maximum power point tracking techniques: A comparative survey, suggested classification and uninvestigated combinations, Sol. Energy 169 (2018), 535-555. https://doi.org/10.1016/j.solener.2018.04.045
  52. J. Kivimaki, S. Kolesnik, M. Sitbon, T. Suntio, and A. Kuperman, Design guidelines for multiloop perturbative maximum power point tracking algorithms, IEEE Trans. Power Electron. 33 (2017), 1284-1293. https://doi.org/10.1109/TPEL.2017.2683268
  53. A. Bin Jusoh, O. J. E. I. Mohammed, and T. Sutikno, Variable step size perturb and observe MPPT for PV solar applications, Telkomnika 13 (2015), 1.
  54. D. N. Luta and A. K. Raji, Comparing fuzzy rule-based MPPT techniques for fuel cell stack applications, Energy Procedia 156 (2019), 177-182. https://doi.org/10.1016/j.egypro.2018.11.124
  55. S. Assahout, H. Elaissaoui, A. El Ougli, B. Tidhaf, and H. Zrouri, A neural network and fuzzy logic based MPPT algorithm for photovoltaic pumping system, Int. J. Power Electron. Drive Syst. 9 (2018), 1823-1833.
  56. T. Sutikno, A. C. Subrata, and A. Elkhateb, Evaluation of fuzzy membership function effects for maximum power point tracking technique of photovoltaic system, IEEE Access 9 (2021), 109157-109165. https://doi.org/10.1109/ACCESS.2021.3102050
  57. M. Killi and S. Samanta, Modified perturb and observe MPPT algorithm for drift avoidance in photovoltaic systems, IEEE Trans. Ind. Electron. 62 (2015), 5549-5559. https://doi.org/10.1109/TIE.2015.2407854
  58. X. Li, H. Wen, Y. Hu, and L. Jiang, Drift-free current sensorless MPPT algorithm in photovoltaic systems, Sol. Energy 177 (2019), 118-126. https://doi.org/10.1016/j.solener.2018.10.066