DOI QR코드

DOI QR Code

Application of Hamilton variational principle for vibration of fluid filled structure

  • Khaled Mohamed Khedher (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Muzamal Hussain (Department of Mathematics, University of Sahiwal) ;
  • Rizwan Munir (Department of statistics. jiangxi university of finance and economics) ;
  • Saleh Alsulamy (Department of Architecture & Planning, College of Engineering, King Khalid University) ;
  • Ayed Eid Alluqmani (Department of Architecture & Planning, College of Engineering, King Khalid University)
  • Received : 2021.03.24
  • Accepted : 2023.08.14
  • Published : 2023.11.25

Abstract

Vibration investigation of fluid-filled three layered cylindrical shells is studied here. A cylindrical shell is immersed in a fluid which is a non-viscous one. Shell motion equations are framed first order shell theory due to Love. These equations are partial differential equations which are usually solved by approximate technique. Robust and efficient techniques are favored to get precise results. Employment of the wave propagation approach procedure gives birth to the shell frequency equation. Use of acoustic wave equation is done to incorporate the sound pressure produced in a fluid. Hankel's functions of second kind designate the fluid influence. Mathematically the integral form of the Lagrange energy functional is converted into a set of three partial differential equations. It is also exhibited that the effect of frequencies is investigated by varying the different layers with constituent material. The coupled frequencies changes with these layers according to the material formation of fluid-filled FG-CSs. Throughout the computation, it is observed that the frequency behavior for the boundary conditions follow as; clamped-clamped (C-C), simply supported-simply supported (SS-SS) frequency curves are higher than that of clamped-simply (C-S) curves. Expressions for modal displacement functions, the three unknown functions are supposed in such way that the axial, circumferential and time variables are separated by the product method. Computer software MATLAB codes are used to solve the frequency equation for extracting vibrations of fluid-filled.

Keywords

Acknowledgement

This research work was supported by the Deanship of Scientific Research at King Khalid University under grant number: RGP2/422/44.

References

  1. Amabili, M. (1999), "Vibration of circular tubes and shells filled and partially immersed in dense fluids", J. Sound Vib., 221(4), 567-585. https://doi.org/10.1006/jsvi.1998.2050
  2. Ansari, R., and Rouhi, H. (2015), "Nonlocal Flugge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach", Int. J. Nano Dimension, 6(5), 453-462. https://doi.org/10.7508/IJND.2015.05.002
  3. Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart. Struct. Syst., 18(4), 787-800. http://doi.org/10.12989/sss.2016.18.4.787
  4. Arefi, M. and Zenkour, A.M. (2017), "Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor", Smart. Struct. Syst., 19, 33-38. https://doi.org/10.12989/sss.2017.19.1.033
  5. Arshad, S.H., Naeem, M.N. and Sultana, N. (2007). "Frequency analysis of functionally graded cylindrical shells with various volume fraction laws", J. Mech. Eng. Sci., 221, 1483-1495. https://doi.org/10.1243/09544062JMES738
  6. Asghar, S., Hussain, M. and Naeem, M. (2019), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", Physica E, 116, 113726. https://doi.org/10.1016/j.physe.2019.113726
  7. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443. https://doi.org/10.12989/anr.2019.7.6.443
  8. Chi, S.H. and Chung, Y.L. (2006), ''Mechanical behavior of functionally graded material plates under transverse load-part II: numerical results'', Int. J. Solids Struct., 43, 3657-3691. https://doi.org/10.1016/j.ijsolstr.2005.04.010
  9. Chung, H., Turula, P. Mulcahy, T.M. and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nuclear Eng. Des., 63(1), 109-1012. https://doi.org/10.1016/0029-5493(81)90020-0.
  10. Dong S.B. (1977), "A block-stodola eigen solution technique for large algebraic systems with non-symmetrical matrices", Int. J. Numer. Method. Eng., 11, 247. https://doi.org/10.1002/nme.1620110204
  11. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135. https://doi.org/10.12989/anr.2019.7.2.135
  12. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39. https://doi.org/10.12989/anr.2019.7.1.039
  13. Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139
  14. Goncalves, P.B., Da silva, F.M.A. and Prado, Z.J.G.N. (2006), "Transient stability of empty and fluid-filled cylindrical shells", J. Brazil Soc. Mech. Sci. Eng., 28(3), 331-333. http://doi.org/10.1590/S1678-58782006000300011.
  15. He, J.H., Hou, W.F., Qie, N., Gepreel, K.A., Shirazi, A.H. and Mohammad-Sedighi, H. (2021), "Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators", Facta Univ. Series Mech. Eng., 19(2), 199-208. https://doi.org/10.22190/FUME201205002H
  16. He, J.H., Moatimid, G.M. and Zekry, M.H. (2022), "Forced nonlinear oscillator in a fractal space", Facta Univ. Series Mech. Eng., 20(1), 001-020. https://doi.org/10.22190/FUME220118004H
  17. Jiang, J. and Olson, M.D. (1994), "Vibrational analysis of orthogonally stiffened cylindrical shells using super elements", J. Sound Vib., 173, 73-83. https://doi.org/10.1006/jsvi.1994.1218
  18. Jweeg, M.J. and Alazzawy, W.I. (2009), "Free vibration Analysis solution for laminated truncated conical shells using high orde theory", Proceedings of the 6th College of Engineering - University of Baghdad, 3, 208-225.
  19. Jweeg, M.J. and Alazzawy, W.I. (2007), "A suggested analytical solution for laminated closed cylindrical shells using General Third Shell Theory (GTT)", Al-Nahrain J. Eng. Sci., 10(1), 11-26.
  20. Jweeg, M.J., Alazzawy, W.I. and Dep, M.E. (2010), "A study of free vibration and fatigue for cross-ply closed cylindrical shells using General Third shell Theory (GTT)", J. Eng, 16(6), 5170-5184. https://doi.org/10.31026/j.eng.2010.02.29
  21. Koizumi, M. (1997), "FGM Activities in Japan", Composites. Loy, C.T., Lam, K.L. and Shu, C. (1997), "Analysis of cylindrical shells using generalized differential quadrature", Shock Vib., 4(3),193-198. https://doi.org/10.3233/SAV-1997.
  22. Ma, H. (2022), "Simplified Hamiltonian-based frequency-amplitude formulation for nonlinear vibration systems", Facta Univ. Series Mech. Eng., 20(2), 445-455. https://doi.org/10.22190/FUME220420023M
  23. Naeem, M.N., Ghamkhar, M., Arshad, S.H. and Shah, A.G. (2013), "Vibration analysis of submerged thin FGM cylindrical shells", J. Mech. Sci. Technol., 27(3), 649-656. http/10.1007/s12206-013-0119-6
  24. Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mech., 191, 75-91. http/10.1007/s00707-006-0438-0
  25. Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
  26. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7, 265-275. https://doi.org/10.12989/anr.2019.7.4.265
  27. Sewall, J.L. and Naumann, E.C. (1968), An Experimental and Analytical Vibration Study of Thin Cylindrical Shells with and Without Longitudinal Stiffeners, National Aeronautic and Space Administration, for sale by the Clearinghouse for Federal Scientific and Technical Information, Virginia, U.S.A.
  28. Shah, A.G., Mahmood, T. and Naeem, M.N. (2009), "Vibrations of FGM thin cylindrical shells with exponential volume fraction law", Appl. Math. Mech., 30(5), 607-615. https://doi.org/10.1007/s10483-009-0507-x
  29. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates" Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337
  30. Sharma, C.B., Darvizeh, M. and Darvizeh, A. (1998), "Natural frequency response of vertical cantilever composite shells containing fluid", Eng. Struct., 20(8), 732-737. https://doi.org/10.1016/S0141-0296(97)00102-8
  31. Sodel W. (1981), Vibration of Shell and Plates, Mechanical Engineering series, Marcel Dekker, New York, U.S.A.
  32. Sofiyev, A.H. and Avcar, M. (2010), "The stability of cylindrical shells containing an FGM layer subjected to axial load on the pasternak foundation", Engineering, 2, 228-236. https://doi.org/10.4236/eng.2010.24033
  33. Suresh, S. and Mortensen, A. (1997), "Functionally gradient metals and metal ceramic composites, Part 2: Thermo mechanical behavior", Int. Mater, 42, 85-116. https://doi.org/10.1179/imr.1995.40.6.239
  34. Toulokian, Y.S. (1967), "Thermo physical properties of high temperature solid materials", Macmillan, New York, U.S.A.
  35. Wang, C.M., Swaddiwudhipong, S. and Tian, J. (1997), "Ritz method for vibration analysis of cylindrical shells with ring-stiffeners", J. Eng. Mech., 123, 134-143. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:2(134)
  36. Wang, C. and Lai, J.C.S. (2000), "Prediction of natural frequencies of finite length circular cylindrical shells", Appl. Acoust., 59(4), 385-400. https://doi.org/10.1016/S0003-682X(99)00039-0
  37. Wuite, J. and Adali, S. (2005), "Deflection and stress behavior of nanocomposite reinforced beams using a multiscale analysis", Compos Struct, 71(3-4), 388-396. https://doi.org/10.1016/j.compstruct.2005.09.011
  38. Xiang, Y., Ma. Y.F., Kitipornchai. S., Lau. C.W.H. (2002), "Exact solutions for vibration of cylindrical shells with intermediate ring supports", Int. J. Mech. Sci., 44(9), 1907-1924. https://doi.org/10.1016/S0020-7403(02)00071-1
  39. Xuebin, L. (2008), "Study on free vibration analysis of circular cylindrical shells using wave propagation", J. Sound Vib., 311, 667-682. https://doi.org/10.1016/j.jsv.2007.09.023
  40. Zhang, X.M., Liu G.R. and Lam, K.Y. (2001), "Coupled vibration of fluid-filled cylindrical shells using the wave propagation approach", Appl. Acoust., 62, 229-243. https://doi.org/10.1016/S0003-682X(00)00045-1
  41. Zhang, X.M. (2002), "Parametric analysis of frequency of rotating laminated composite cylindrical shells with the wave propagation approach", Comput. Method Appl. Mech. Eng., 191, 2057-2071. https://doi.org/10.1016/S0045-7825(01)00368-1.