Acknowledgement
This research work was supported by the Deanship of Scientific Research at King Khalid University under grant number: RGP2/422/44.
References
- Amabili, M. (1999), "Vibration of circular tubes and shells filled and partially immersed in dense fluids", J. Sound Vib., 221(4), 567-585. https://doi.org/10.1006/jsvi.1998.2050
- Ansari, R., and Rouhi, H. (2015), "Nonlocal Flugge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach", Int. J. Nano Dimension, 6(5), 453-462. https://doi.org/10.7508/IJND.2015.05.002
- Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart. Struct. Syst., 18(4), 787-800. http://doi.org/10.12989/sss.2016.18.4.787
- Arefi, M. and Zenkour, A.M. (2017), "Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor", Smart. Struct. Syst., 19, 33-38. https://doi.org/10.12989/sss.2017.19.1.033
- Arshad, S.H., Naeem, M.N. and Sultana, N. (2007). "Frequency analysis of functionally graded cylindrical shells with various volume fraction laws", J. Mech. Eng. Sci., 221, 1483-1495. https://doi.org/10.1243/09544062JMES738
- Asghar, S., Hussain, M. and Naeem, M. (2019), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", Physica E, 116, 113726. https://doi.org/10.1016/j.physe.2019.113726
- Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443. https://doi.org/10.12989/anr.2019.7.6.443
- Chi, S.H. and Chung, Y.L. (2006), ''Mechanical behavior of functionally graded material plates under transverse load-part II: numerical results'', Int. J. Solids Struct., 43, 3657-3691. https://doi.org/10.1016/j.ijsolstr.2005.04.010
- Chung, H., Turula, P. Mulcahy, T.M. and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nuclear Eng. Des., 63(1), 109-1012. https://doi.org/10.1016/0029-5493(81)90020-0.
- Dong S.B. (1977), "A block-stodola eigen solution technique for large algebraic systems with non-symmetrical matrices", Int. J. Numer. Method. Eng., 11, 247. https://doi.org/10.1002/nme.1620110204
- Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135. https://doi.org/10.12989/anr.2019.7.2.135
- Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39. https://doi.org/10.12989/anr.2019.7.1.039
- Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139
- Goncalves, P.B., Da silva, F.M.A. and Prado, Z.J.G.N. (2006), "Transient stability of empty and fluid-filled cylindrical shells", J. Brazil Soc. Mech. Sci. Eng., 28(3), 331-333. http://doi.org/10.1590/S1678-58782006000300011.
- He, J.H., Hou, W.F., Qie, N., Gepreel, K.A., Shirazi, A.H. and Mohammad-Sedighi, H. (2021), "Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators", Facta Univ. Series Mech. Eng., 19(2), 199-208. https://doi.org/10.22190/FUME201205002H
- He, J.H., Moatimid, G.M. and Zekry, M.H. (2022), "Forced nonlinear oscillator in a fractal space", Facta Univ. Series Mech. Eng., 20(1), 001-020. https://doi.org/10.22190/FUME220118004H
- Jiang, J. and Olson, M.D. (1994), "Vibrational analysis of orthogonally stiffened cylindrical shells using super elements", J. Sound Vib., 173, 73-83. https://doi.org/10.1006/jsvi.1994.1218
- Jweeg, M.J. and Alazzawy, W.I. (2009), "Free vibration Analysis solution for laminated truncated conical shells using high orde theory", Proceedings of the 6th College of Engineering - University of Baghdad, 3, 208-225.
- Jweeg, M.J. and Alazzawy, W.I. (2007), "A suggested analytical solution for laminated closed cylindrical shells using General Third Shell Theory (GTT)", Al-Nahrain J. Eng. Sci., 10(1), 11-26.
- Jweeg, M.J., Alazzawy, W.I. and Dep, M.E. (2010), "A study of free vibration and fatigue for cross-ply closed cylindrical shells using General Third shell Theory (GTT)", J. Eng, 16(6), 5170-5184. https://doi.org/10.31026/j.eng.2010.02.29
- Koizumi, M. (1997), "FGM Activities in Japan", Composites. Loy, C.T., Lam, K.L. and Shu, C. (1997), "Analysis of cylindrical shells using generalized differential quadrature", Shock Vib., 4(3),193-198. https://doi.org/10.3233/SAV-1997.
- Ma, H. (2022), "Simplified Hamiltonian-based frequency-amplitude formulation for nonlinear vibration systems", Facta Univ. Series Mech. Eng., 20(2), 445-455. https://doi.org/10.22190/FUME220420023M
- Naeem, M.N., Ghamkhar, M., Arshad, S.H. and Shah, A.G. (2013), "Vibration analysis of submerged thin FGM cylindrical shells", J. Mech. Sci. Technol., 27(3), 649-656. http/10.1007/s12206-013-0119-6
- Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mech., 191, 75-91. http/10.1007/s00707-006-0438-0
- Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
- Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7, 265-275. https://doi.org/10.12989/anr.2019.7.4.265
- Sewall, J.L. and Naumann, E.C. (1968), An Experimental and Analytical Vibration Study of Thin Cylindrical Shells with and Without Longitudinal Stiffeners, National Aeronautic and Space Administration, for sale by the Clearinghouse for Federal Scientific and Technical Information, Virginia, U.S.A.
- Shah, A.G., Mahmood, T. and Naeem, M.N. (2009), "Vibrations of FGM thin cylindrical shells with exponential volume fraction law", Appl. Math. Mech., 30(5), 607-615. https://doi.org/10.1007/s10483-009-0507-x
- Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates" Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337
- Sharma, C.B., Darvizeh, M. and Darvizeh, A. (1998), "Natural frequency response of vertical cantilever composite shells containing fluid", Eng. Struct., 20(8), 732-737. https://doi.org/10.1016/S0141-0296(97)00102-8
- Sodel W. (1981), Vibration of Shell and Plates, Mechanical Engineering series, Marcel Dekker, New York, U.S.A.
- Sofiyev, A.H. and Avcar, M. (2010), "The stability of cylindrical shells containing an FGM layer subjected to axial load on the pasternak foundation", Engineering, 2, 228-236. https://doi.org/10.4236/eng.2010.24033
- Suresh, S. and Mortensen, A. (1997), "Functionally gradient metals and metal ceramic composites, Part 2: Thermo mechanical behavior", Int. Mater, 42, 85-116. https://doi.org/10.1179/imr.1995.40.6.239
- Toulokian, Y.S. (1967), "Thermo physical properties of high temperature solid materials", Macmillan, New York, U.S.A.
- Wang, C.M., Swaddiwudhipong, S. and Tian, J. (1997), "Ritz method for vibration analysis of cylindrical shells with ring-stiffeners", J. Eng. Mech., 123, 134-143. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:2(134)
- Wang, C. and Lai, J.C.S. (2000), "Prediction of natural frequencies of finite length circular cylindrical shells", Appl. Acoust., 59(4), 385-400. https://doi.org/10.1016/S0003-682X(99)00039-0
- Wuite, J. and Adali, S. (2005), "Deflection and stress behavior of nanocomposite reinforced beams using a multiscale analysis", Compos Struct, 71(3-4), 388-396. https://doi.org/10.1016/j.compstruct.2005.09.011
- Xiang, Y., Ma. Y.F., Kitipornchai. S., Lau. C.W.H. (2002), "Exact solutions for vibration of cylindrical shells with intermediate ring supports", Int. J. Mech. Sci., 44(9), 1907-1924. https://doi.org/10.1016/S0020-7403(02)00071-1
- Xuebin, L. (2008), "Study on free vibration analysis of circular cylindrical shells using wave propagation", J. Sound Vib., 311, 667-682. https://doi.org/10.1016/j.jsv.2007.09.023
- Zhang, X.M., Liu G.R. and Lam, K.Y. (2001), "Coupled vibration of fluid-filled cylindrical shells using the wave propagation approach", Appl. Acoust., 62, 229-243. https://doi.org/10.1016/S0003-682X(00)00045-1
- Zhang, X.M. (2002), "Parametric analysis of frequency of rotating laminated composite cylindrical shells with the wave propagation approach", Comput. Method Appl. Mech. Eng., 191, 2057-2071. https://doi.org/10.1016/S0045-7825(01)00368-1.