DOI QR코드

DOI QR Code

교통차량진동 자료에 대한 최적 가상공통송신원모음 제작 연구

A Study on Generating Virtual Shot-Gathers from Traffic Noise Data

  • 손우현 (한국지질자원연구원 해저지질에너지연구본부) ;
  • 최윤석 (한국지질자원연구원 해저지질에너지연구본부) ;
  • 장성형 (한국지질자원연구원 해저지질에너지연구본부) ;
  • 이동훈 (한국지질자원연구원 해저지질에너지연구본부) ;
  • 정순홍 (한국지질자원연구원 기후변화대응연구본부) ;
  • 주용환 (한국지질자원연구원 해저지질에너지연구본부) ;
  • 김병엽 (한국지질자원연구원 해저지질에너지연구본부)
  • Woohyun Son (Marine Geology and Energy Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Yunsuk Choi (Marine Geology and Energy Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Seonghyung Jang (Marine Geology and Energy Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Donghoon Lee (Marine Geology and Energy Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Snons Cheong (Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Yonghwan Joo (Marine Geology and Energy Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Byoung-yeop Kim (Marine Geology and Energy Division, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2023.10.18
  • 심사 : 2023.11.10
  • 발행 : 2023.11.30

초록

도심지에서 화약, 기계적 진동 등의 인공 송신원을 이용할 경우 진동 및 소음으로 인한 민원발생으로 탄성파탐사에 어려움이 있다. 인공 송신원의 대안으로 교통차량의 진동에 의해 발생하는 표면파를 이용하여 도심 지하 천부의 물성을 파악할 수 있다. 그러나 교통차량 진동은 일정 속도로 연속적으로 이동하는 평면파의 형태를 하고 있어, 기존의 표면파 처리 및 역산 기법을 적용하기 위해서는 탄성파 간섭법을 적용하여 교통차량 진동 자료를 점-송신원 형태의 가상공통송신원모음으로 변환시켜야 한다. 본 연구에서는 교통차량 진동 자료에 다양한 탄성파 간섭법을 적용하고, 타우-피 및 주파수-파수 영역에서 그 결과를 비교하여 최적의 탄성파 간섭법을 도출하였다. 또한, 다양한 방향의 수진기 배열로 취득된 자료들에 대해 탄성파 간섭법을 적용하고, 그 결과들을 비교 및 분석하여 탐사에 가장 적합한 수진기 배열 방향을 도출하였다.

The use of artificial sources such as explosives and mechanical vibrations for seismic exploration in urban areas poses challenges, as the vibrations and noise generated can lead to complaints. As an alternative to artificial sources, the surface waves generated by traffic noise can be used to investigate the subsurface properties of urban areas. However, traffic noise takes the form of plane waves moving continuously at a constant speed. To apply existing surface wave processing/inversion techniques to traffic noise, the recorded data need to be transformed into a virtual shot gather format using seismic interferometry. In this study, various seismic interferometry methods were applied to traffic noise data, and the optimal method was derived by comparing the results in the Radon and F-K domains. Additionally, the data acquired using various receiver arrays were processed using seismic interferometry, and the results were compared and analyzed to determine the most optimal receiver array direction for exploration.

키워드

과제정보

본 연구는 한국지질자원연구원 기본사업인 "교통차량 진동을 이용한 도심 지질탐사 및 상시 모니터링 기술 개발(23-3806)" 과제 및 "3D 해저 정밀영상화를 위한 복합 탄성파 탐사 및 실규모 고분해능 처리기술 개발(23-3312)" 과제의 일환으로 수행되었습니다.

참고문헌

  1. Curtis, A., Gerstoft, P., Sato, H., Snieder, R., and Wapenaar, K., 2006, Seismic interferometry turning noise into signal, The Leading Edge, 25(9), 1082-1092. https://doi.org/10.1190/1.2349814
  2. Dou, S., Lindsey, N., Wagner, A. M., Daley, T. M., Freifeld, B., Robertson, M., Peterson, J., Ulrich, C., Martin, E. R., and Ajo-Franklin, J. B., 2017, Distributed acoustic sensing for seismic monitoring of the near surface: A traffic-noise interferometry case study, Scientific Reports, 7, 11620, doi: 10.1038/s41598-017-11986-4
  3. Nakata, N., Snieder, R., Tsuji, T., Larner, K., and Matsuoka, T., 2011, Shear wave imaging from traffic noise using seismic interferometry by cross-coherence, Geophysics, 76(6), SA97-SA106. https://doi.org/10.1190/geo2010-0188.1
  4. Nazarian, S., Stokoe, K. H., and Hudson, W. R., 1983, Use of spectral analysis of surface waves method for determination of moduli and thickness of pavement systems, Transport. Res. Record, 930, 38-45. https://onlinepubs.trb.org/Onlinepubs/trr/1983/930/930-006.pdf https://doi.org/10.1111/j.1365-2044.1983.tb12017.x
  5. Park, C. B., Miller, R. D., and Xia, J., 1999, Multichannel analysis of surface waves, Geophysics, 64(3), 800-808. https://www.kgs.ku.edu/software/surfseis/Publications/ParkEtAl1999.pdf https://doi.org/10.1190/1.1444590
  6. Park, C. B., Miller, R. D., Xia, J., and Ivanov, J., 2007, Multichannel analysis of surface waves (MASW)-active and passive methods, The Leading Edge, 26(1), 60-64. https://doi.org/10.1190/1.2431832
  7. Riahi, N., and Gerstoft, P., 2015, The seismic traffic footprint: Tracking trains, aircraft, and cars seismically, Geophys. Res. Lett., 42(8), 2674-2681. https://doi.org/10.1002/2015GL063558
  8. Schuster, G. T., Yu, J., Sheng, J., and Rickett, J., 2004, Interferometric/daylight seismic imaging, Geophysical Journal International, 157(2), 838-852. https://doi.org/10.1111/j.1365-246X.2004.02251.x
  9. Snieder, R., Wapenaar, K., and Larner, K., 2006, Spurious multiples in seismic interferometry of primaries, Geophysics, 71(4), SI111-SI124. https://research.tudelft.nl/en/publications/spurious-multiples-in-seismic-interferometry-of-primaries https://doi.org/10.1190/1.2211507
  10. Stokoe, K. H., Wright, S. G., Bay, J. A., and Roesset, J. M., 1994, Characterization of geotechnical sites by SASW method, in Woods, R. D., Ed., Geophysical Characterization of Sites, 15-25. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6402538
  11. Vasconcelos, I., and Snieder, R., 2008, Interferometry by deconvolution: Part 1  Theory for acoustic waves and numerical examples, Geophysics, 73(3), S115-S128. https://doi.org/10.1190/1.2904554
  12. Wapenaar, K., and Fokkema, J., 2006, Green's function representations for seismic interferometry, Geophysics, 71(4), SI33-SI46. https://doi.org/10.1190/1.2213955
  13. Xia, J., Miller, R. D., and Park, C. B., 1999, Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves, Geophysics, 64(3), 691-700. https://doi.org/10.1190/1.1444578
  14. Zhang, Y., Li, Y. E., Zhang, H., and Ku, T., 2019, Near-surface site investigation by seismic interferometry using urban traffic noise in Singapore, Geophysics, 84(2), B169-B180. https://doi.org/10.1190/geo2017-0798.1