DOI QR코드

DOI QR Code

Effects of Wearing a Microcurrent Wrist Guard on Pain Scale, Range of Motion, and Muscle Strength in Elderly Women with Carpal Tunnel Syndrome

미세전류 손목 보호대 착용이 손목터널증후군 노인 여성의 통증 척도, 관절가동범위 및 근력에 미치는 영향

  • Hyesun Park (Dept. of Smart Wearable Engineering, Soongsil University) ;
  • Jinhee Park (Dept. of Materials Science and Engineering, Soongsil University) ;
  • Jooyong Kim (Dept. of Materials Science and Engineering, Soongsil University)
  • 박혜선 (숭실대학교, 스마트웨어러블공학과) ;
  • 박진희 (숭실대학교, 신소재공학과) ;
  • 김주용 (숭실대학교, 신소재공학과)
  • Received : 2023.08.30
  • Accepted : 2023.10.26
  • Published : 2023.11.30

Abstract

The purpose of this study was to investigate impact of wearing low-level current wrist guards on pain scale, range of motion (ROM), and muscle strength in elderly women with Carpal Tunnel Syndrome (CTS). Subjects were 12 elderly women aged between 65 and 85 years who were diagnosed with CTS symptoms. Measurements included grip strength and wrist ROM. Wrist ROM was assessed through flexion and dorsiflexion. Wrist guards were worn. After two weeks, pain level was assessed using the Visual Analogue Scale (VAS). Results showed a significant reduction in VAS score in the MES group after stimulation, whereas there was no difference in the control group. However, there was no significant difference in ROM between the MES group and the control group. Grip strength increased in the MES group after two weeks (p ≤ 0.001). In conclusion, clinical trials suggest that MES wrist guards might be provided as an adjunctive treatment method for CTS patients. This study provides foundational data for the design and use of auxiliary devices such as gloves in the field of MES research for pain reduction, ROM improvement, and muscle strength enhancement resulting from CTS.

Keywords

Acknowledgement

이 논문은 2023년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원('20016038')과 2023년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임 (P0012770, 2023년 산업혁신인재성장지원사업)

References

  1. Alperovitch-Najenson, D., Carmeli, E., Coleman, R., & Ring, H. (2004). Handgrip strength as a diagnostic tool in work-related upper extremity musculoskeletal disorders in women. The Scientific World Journal, 4, 111-117. https://doi.org/10.1100/tsw.2004.12
  2. Atroshi, I., Gummesson, C., Johnsson, R., Ornstein, E., Ranstam, J., & Rosen, I. (1999). Prevalence of carpal tunnel syndrome in a general population. Jama, 282(2), 153-158. https://doi.org/10.1001/jama.282.2.153
  3. Battecha, K. H., Kamel, D. M., & Tantawy, S. A. (2021). Investigating the effectiveness of adding microcurrent therapy to a traditional treatment program in myofascial pain syndrome in terms of neck pain and function. Physiotherapy Quarterly, 29(1), 17-23. doi:10.5114/pq.2020.96421
  4. Brumfield, R. H., & Champoux, J. A. (1984). A biomechanical study of normal functional wrist motion. Clinical Orthopaedics and Related Research®, 187, 23-25.
  5. Carlson, V. R., Ong, A. C., Orozco, F. R., Hernandez, V. H., Lutz, R. W., & Post, Z. D. (2018). Compliance with the AAOS guidelines for treatment of osteoarthritis of the knee: A survey of the American association of hip and knee surgeons. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 26(3), 103-107 doi: 10.5435/JAAOS-D-17-00164
  6. Cho, N., & Song, S. (2014). Effects of microcurrent delayed onset muscle soreness on creatine Kinase. Journal of The Korean Society of Integrative Medicine, 2(3), 31-37. doi:10.15268/ksim.2014.2.3.031
  7. Cho, W.-S., Kim, Y.-N., Kim, Y.-S., Hwang, T.-Y., & Jin, H.-K. (2012). The effects of microcurrent treatment and ultrasound treatment on the pain relief and functional recovery after total knee replacement. The Journal of Korean Physical Therapy, 24(2), 118-126.
  8. Choi, G. H., Wieland, L. S., Lee, H., Sim, H., Lee, M. S., & Shin, B. C. (2018). Acupuncture and related interventions for the treatment of symptoms associated with carpal tunnel syndrome. Cochrane Database of Systematic Reviews, (12). doi:10.1002/14651858.CD011215.pub2
  9. Fujiya, H., & Goto, K. (2016). New aspects of microcurrent electrical neuromuscular stimulation in sports medicine. The Journal of Physical Fitness and Sports Medicine, 5(1), 69-72. doi:10.7600/jpfsm.5.69
  10. Gerritsen, A. A., De Vet, H. C., Scholten, R. J., Bertelsmann, F. W., De Krom, M. C., & Bouter, L. M. (2002). Splinting vs surgery in the treatment of carpal tunnel syndrome: A randomized controlled trial. Jama, 288(10), 1245-1251. https://doi.org/10.1001/jama.288.10.1245
  11. Gomaa, A. A. (1987). Characteristics of analgesia induced by adenosine triphosphate. Pharmacology & toxicology, 61(3), 199-202. https://doi.org/10.1111/j.1600-0773.1987.tb01803.x
  12. Graham, B., Regehr, G., Naglie, G., & Wright, J. G. (2006). Development and validation of diagnostic criteria for carpal tunnel syndrome. The Journal of hand surgery, 31(6), 919-e1.
  13. Helen, W., De Leonardis, P., Ulijn, R. V., Gough, J., & Tirelli, N. (2011). Mechanosensitive peptide gelation: Mode of agitation controls mechanical properties and nano-scale morphology. Soft Matter, 7(5), 1732-1740. https://doi.org/10.1039/C0SM00649A
  14. Hiroshige, Y., Watanabe, D., Aibara, C., Kanzaki, K., Matsunaga, S., & Wada, M. (2018). The efficacy of microcurrent therapy on eccentric contraction-induced muscle damage in rat fast-twitch skeletal muscle. Open Journal of Applied Sciences, 8(3), 89-102. doi: 10.4236/ojapps.2018.83008
  15. Ibrahim, I., Khan, W., Goddard, N., & Smitham, P. (2012). Suppl 1: Carpal tunnel syndrome: A review of the recent literature. The Open Orthopaedics Journal, 6, 69. doi: 10.2174/1874325001206010069
  16. Kambouris, M. E., Zagoriti, Z., Lagoumintzis, G., & Poulas, K. (2014). From therapeutic electrotherapy to electroceuticals: Formats, applications and prospects of electrostimulation. Annual Research & Review in Biology, 3054-3070.
  17. Kang, D.-H., Jeon, J.-K., & Lee, J.-H. (2015). Effects of low-frequency electrical stimulation on cumulative fatigue and muscle tone of the erector spinae. Journal of Physical Therapy Science, 27(1), 105-108. doi:10.1589/jpts.27.105
  18. Kim, J. H., Choi, H., Suh, M. J., Shin, J. H., Hwang, M. H., & Lee, H.-M. (2013). Effect of biphasic electrical current stimulation on IL-1β-stimulated annulus fibrosus cells using in vitro microcurrent generating chamber system. Spine, 38(22), E1368-E1376. doi: 10.1097/BRS.0b013e3182a211e3
  19. Koopman, J. S., Vrinten, D. H., & van Wijck, A. J. (2009). Efficacy of microcurrent therapy in the treatment of chronic nonspecific back pain: A pilot study. The Clinical Journal of Pain, 25(6), 495-499. https://doi.org/10.1097/AJP.0b013e31819a6f3e
  20. Kwon, D. R., Kim, J., Kim, Y., An, S., Kwak, J., Lee, S., Park, S., Choi, Y. H., Lee, Y. K., & Park, J. W. (2017). Short-term microcurrent electrical neuromuscular stimulation to improve muscle function in the elderly: A randomized, double-blinded, sham-controlled clinical trial. Medicine, 96(26). doi: 10.1097/MD.0000000000007407
  21. Langer, D., Maeir, A., Michailevich, M., & Luria, S. (2017). Evaluating hand function in clients with trigger finger. Occupational Therapy International, 2017. doi:10.1155/2017/9539206
  22. Lee, J.-W., Kang, J.-S., Park, S.-J., Yoon, S.-W., Jeong, S.-K., & Heo, M. (2013). Effects of inter-electrode distance on delayed onset muscle soreness in microcurrent therapy. Journal of Physical Therapy Science, 25(11), 1451-1454. doi:10.1589/jpts.25.1451
  23. Manktelow, R. T., Binhammer, P., Tomat, L. R., Bril, V., & Szalai, J. P. (2004). Carpal tunnel syndrome: Cross-sectional and outcome study in Ontario workers. The Journal of Hand Surgery, 29(2), 307-317.
  24. McMakin, C. (2011). Frequency specific microcurrent in pain management. Washington:Elsevier Health Sciences.
  25. Ostergaard, P. J., Meyer, M. A., & Earp, B. E. (2020). Non-operative treatment of carpal tunnel syndrome. Current Reviews in Musculoskeletal Medicine, 13, 141-147. doi:10.1007/s12178-020-09616-0
  26. Padua, L., Coraci, D., Erra, C., Pazzaglia, C., Paolasso, I., Loreti, C., Caliandro, P., & Hobson-Webb, L. D. (2016). Carpal tunnel syndrome: Clinical features, diagnosis, and management. The Lancet Neurology, 15(12), 1273-1284. doi:10.1016/S1474-4422(16)30231-9
  27. Page, M. J., Massy-Westropp, N., O'Connor, D., & Pitt, V. (2012). Splinting for carpal tunnel syndrome. The Cochrane Database of Systematic Reviews, 2012(7). doi: 10.1002/14651858.CD010003
  28. Poltawski, L., Johnson, M., & Watson, T. (2012). Microcurrent therapy in the management of chronic tennis elbow: Pilot studies to optimize parameters. Physiotherapy Research International, 17(3), 157-166. doi:10.1002/pri.526
  29. Ryu, J., Cooney III, W. P., Askew, L. J., An, K. N., & Chao, E. Y. (1991). Functional ranges of motion of the wrist joint. The Journal of Hand Surgery, 16(3), 409-419. doi: 10.1039/C0SM00649A
  30. Schieber, M. H., & Santello, M. (2004). Hand function: Peripheral and central constraints on performance. Journal of Applied Physiology, 96(6), 2293-2300. https://doi.org/10.1152/japplphysiol.01063.2003
  31. Standring, S., Ellis, H., Healy, J., Johnson, D., Williams, A., Collins, P., & Wigley, C. (2005). Gray's anatomy: The anatomical basis of clinical practice. American Journal of Neuroradiology, 26(10), 2703.
  32. Tamburin, S., Cacciatori, C., Marani, S., & Zanette, G. (2008). Pain and motor function in carpal tunnel syndrome: a clinical, neurophysiological and psychophysical study. Journal of Neurology, 255, 1636-1643. https://doi.org/10.1007/s00415-008-0895-6
  33. Walker, J., Sue, D., Miles-Elkousy, N., Ford, G., & Trevelyan, H. (1984). Active mobility of the extremities in older subjects. Physical Therapy, 64(6), 919-923. https://doi.org/10.1093/ptj/64.6.919