References
- AASHTO (2015), American Association of State Highway and Transportation Officials - AASHTO LRFD Bridge Design Specifications, Washington DC.
- ANSYS (2018), Ansys Release 19 Elements Reference.
- Benedetti, A. and Dall'Aglio, F. (2012), "Patch loading of longitudinally stiffened webs". Bridge Maintenance, Safety, Management, Resilience and Sustainability", Proceedings of the Sixth International Conference on Bridge Maintenance, Safety and Management, 1039-1046.
- Ceranic, A., Bendic, M., Kovacevic, S., Salatic, R. and Markovic, N. (2022), "Influence of patch load length on strengthening effect in steel plate girders", J. Constr. Steel Res., 195, 107348. https://doi.org/10.1016/j.jcsr.2022.107348.
- Cevik, A. (2007), "A new formulation for longitudinally stiffened webs subjected to patch loading", J. Constr. Steel Res., 63(10), 1328-1340. https://doi.org/10.1016/j.jcsr.2006.12.004.
- Cevik, A., Kurtoglu, A.E., Bilgehan, M., Gulsan, M.E. and Albegmprli, H.M. (2015), "Support vector machines in structural engineering: A Review", J. Civ. Eng. Manag., 21(3), 261-281. https://doi.org/10.3846/13923730.2015.1005021.
- Cevik, A., Gogus, M.T., Guzelbey, I.H. and Filiz, H. (2010), "A new formulation for longitudinally stiffened webs subjected to patch loading using stepwise regression method", Adv. Eng. Software, 41(4), 611-618. https://doi.org/10.1016/j.advengsoft.2009.12.001.
- Chacon, R., Mirambell, E. and Real, E. (2019), "Transversally and longitudinally stiffened steel plate girders subjected to patch loading", Thin-Walled Struct., 138, 361-372. https://doi.org/10.1016/j.tws.2019.02.009.
- Cui, Y., Zhang, M. and Tang, Q. (2020), "Symbolic regression for formulation of shear resistance of bearing-type bolted connections", In proceedings of 17th World Conference on Earthquake Engineering, 17WCEE, September, 13-18, Sendai, Japan.
- Dall'Aglio, F. (2011), "Resistenza di travi metalliche a doppio T con irrigidimenti longitudinali soggette a carichi trasversali concentrati", Doctoral dissertation. Universita Degli Studi di Bologna, Dipartimento di Ingegneria Civile, Ambientale e dei Materiali, Bologna; Italy [In Italian]. http://amsdottorato.unibo.it/id/eprint/3952.
- Davaine, L. (2005), "Formulation de la resistance au lancement d'une ame metallique de pont raidie longitudinalement", Doctoral Thesis, D05-05, INSA de Rennes, France. [In French].
- Demari, F.E., Mezzomo, G.P. and Pravia, Z.M.C. (2020), "Numerical study of slender I-girders with one longitudinal stiffener under patch loading", J. Constr. Steel Res., 167, 105964. https://doi.org/10.1016/j.jcsr.2020.105964.
- Eurocode 3 (2006), Design of Steel Structures - Part 1-5: Plated structural elements. EN 1993-1-5: 2006.
- GPlearn (2023), Genetic Programming in Phyton with a scikit-learn inspired API, . Accesed in February 2023.
- Graciano, C. and Edlund, B. (2003), "Failure mechanism of slender girder webs with a longitudinal stiffener under patch loading", J. Constr. Steel Res., 59(1), 27-45. https://doi.org/10.1016/S0143-974X(02)00022-6.
- Graciano, C. (2015), "Patch loading resistance of longitudinally stiffened girders-A systematic review", Thin-Walled Struct., 95, 1-6. https://doi.org/10.1016/j.tws.2015.06.007.
- Graciano, C. and Zapata-Medina, D. (2015), "Effect of longitudinal stiffening on bridge girder webs at incremental launching stage", Ing. Investig., 35(1), 24-30. https://doi.org/10.15446/ing.investig.v35n1.42220.
- Graciano, C., Kurtoglu, A.E. and Casanova, E. (2021), "Machine learning approach for predicting the patch load resistance of slender austenitic stainless steel girders", Structures, 30, 198-205. https://doi.org/10.1016/j.istruc.2021.01.012.
- Hajdin, N. and Markovic, N. (2012), "Failure mechanism for longitudinally stiffened I girders subjected to patch loading", Arch. Appl. Mech., 82(10), 1377-1391. https://doi.org/10.1007/s00419-012-0679-4.
- Kovacevic, S., Markovic, N., Sumarac, D. and Salatic, R. (2019), "Influence of patch load length on plate girders. Part II: Numerical research", J. Constr. Steel Res., 158, 213-229. https://doi.org/10.1016/j.jcsr.2019.03.025.
- Kovacevic, S. and Markovic, N. (2020), "Experimental study on the influence of patch load length on steel plate girders", Thin-Wall. Struct., 151, 106733. https://doi.org/10.1016/j.tws.2020.106733.
- Kovacevic, S., Markovic, N., Sumarac, D. and Salatic, R. (2021), "Unfavorable geometric imperfections in steel plate girders subjected to localized loads", Thin-Wall. Struct., 161, 107412. https://doi.org/10.1016/j.tws.2020.107412.
- Kovesdi, B., Mecseri, B.J. and Dunai, L. (2018), "Imperfection analysis on the patch loading resistance of girders with open section longitudinal stiffeners", Thin-Wall. Struct., 123, 195-205. https://doi.org/10.1016/j.tws.2017.11.030.
- Kovesdi, B. (2018), "Patch loading resistance of slender plate girders with longitudinal stiffeners", J. Constr. Steel Res., 140, 237-246. https://doi.org/10.1016/j.jcsr.2017.10.031.
- Kovesdi, B. and Dunai, L. (2022), "Patch loading resistance of slender plate girders with multiple longitudinal stiffeners", ce/papers, 5(4), 615-622. https://doi.org/10.1002/cepa.1798.
- Kurtoglu, A.E. (2019), "Patch load resistance of longitudinally stiffened webs: Modeling via support vector machines", Steel Compos. Struct.; 29(3), 309-318. https://doi.org/10.12989/scs.2018.29.3.309.
- Kurtoglu, A.E., Casanova, E. and Graciano, C. (2022), "Artificial intelligence-based modeling of extruded aluminum beams subjected to patch loading", Thin-Wall. Struct., 179, 109673. https://doi.org/10.1016/j.tws.2022.109673.
- Loaiza, N., Graciano, C., Chacon, R. and Casanova, E. (2017a), Influence of bearing length on the patch loading resistance of multiple longitudinally stiffened webs", ce/papers, 1(2-3), 4199-4204. https://doi.org/10.1002/cepa.477.
- Loaiza, N., Graciano, C., Chacon, R. and Casanova, E. (2017b), "A comparative analysis of longitudinal stiffener cross-section for slender I-girders subjected to patch loading", ce/papers, 1(2-3), 4223-4229. https://doi.org/10.1002/cepa.480.
- Loaiza, N., Graciano, C. and Casanova, E. (2018), "Design recommendations for patch loading resistance of longitudinally stiffened I-girders", Eng. Struct., 171, 747-758. https://doi.org/10.1016/j.engstruct.2018.06.019.
- Loaiza, N., Graciano, C. and Casanova, E. (2019a), "Web slenderness for longitudinally stiffened I-girders subjected to patch loading", J Constr. Steel Res., 162, 105737. https://doi.org/10.1016/j.jcsr.2019.105737.
- Loaiza, N. (2019b), Effect of longitudinal stiffening on the ultimate resistance of plate girders subjected to patch loading. Doctoral dissertation, Departamento de Ingenieria Civil, Universidad Nacional de Colombia, Medellin, Colombia. https://repositorio.unal.edu.co/handle/unal/76326.
- Markovic, N. and Kovacevic, S. (2019), "Influence of patch load length on plate girders. Part I: Experimental research", J. Constr. Steel Res., 157, 207-228. https://doi.org/10.1016/j.jcsr.2019.02.035.
- Salehi, H., Burgueno, R. (2018), "Emerging artificial intelligence methods in structural engineering", Eng. Struct., 171, 170-189. https://doi.org/10.1016/j.engstruct.2018.05.084.
- Shimizu, S. and Yoshida, S. and Okuhara, H. (1987), "An experimental study on patch loaded web plates", In Proceedings of ECCS Colloq Stab Plate Shell Struct, 85-94.
- Schmidt, M.D. and Lipson, H. (2005), "Coevolution of fitness maximizers and fitness predictors", In Proceedings of the Genetic and Evolutionary Computation Conference GECCO, Late Breaking Paper, Washington DC.
- Schmidt, M.D. and Lipson, H. (2007), "Learning noise", In Proceedings of the 9th Annual Conf. on Genetic and Evolutionary Computation, London, UK 1680-1685.
- Schmidt, M.D. and Lipson, H. (2008), "Coevolution of fitness predictors", IEEE Trans. Evol. Comput., 12(6), 736-749. https://doi.org/10.1109/TEVC.2008.919006.
- Sun, H., Burton, H.V. and Huang, H. (2021), "Machine learning applications for building structural design and performance assessment: State-of-the-art review", J. Build. Eng., 33, 101816. https://doi.org/10.1016/j.jobe.2020.101816.
- Tapeh, A.T.G. and Naser, M.Z. (2023), "Artificial intelligence, machine learning, and deep learning in structural engineering: A scientometrics review of trends and best practices", Arch. Computat. Methods Eng., 30, 115-159. https://doi.org/10.1007/s11831-022-09793-w.
- Thai, H.T. (2022), "Machine learning for structural engineering: A state-of-the-art review", Structures, 38, 448-491. https://doi.org/10.1016/j.istruc.2022.02.003.
- Tran, V.L. and Nguyen, D.D. (2022), "Novel hybrid WOA-GBM model for patch loading resistance prediction of longitudinally stiffened steel plate girders", Thin-Walled Struct., 177, 109424. https://doi.org/10.1016/j.tws.2022.109424.
- Truong, V.H., Papazafeiropoulos, G., Pham, V.T. and Vu, Q.V. (2019). "Effect of multiple longitudinal stiffeners on ultimate strength of steel plate girders", Structures, 22, 366-382. https://doi.org/10.1016/j.istruc.2019.09.002.
- Truong, V.H., Papazafeiropoulos, G., Vu, Q.V., Pham, V.T. and Kong, Z. (2021), "Predicting the patch load resistance of stiffened plate girders using machine learning algorithms", Ocean Eng., 240, 109886. https://doi.org/10.1016/j.oceaneng.2021.109886.
- Vigh, L.G. and Dunai, L. (2010), "Advanced stability analysis of regular stiffened plates and complex plated elements", International Colloquium on Stability and Ductility of Steel Structures SDSS' Rio. 81-100.
- Vu, Q., Papazafeiropoulos, G., Graciano, C. and Kim, S. (2019a), "Optimum linear buckling analysis of longitudinally multi-stiffened steel plates subjected to combined bending and shear", Thin Wall. Struct., 136, 235-245. https://doi.org/10.1016/j.tws.2018.12.008.
- Vu, Q., Truong, V., Papazafeiropoulos, G., Graciano, C. and Kim, S. (2019b), "Bending-buckling strength of steel plates with multiple longitudinal stiffeners", J. Constr. Steel Res., 158, 41-52. https://doi.org/10.1016/j.jcsr.2019.03.006.