DOI QR코드

DOI QR Code

Degradation Mechanisms of a Li-S Cell using Commercial Activated Carbon

  • Norihiro Togasaki (Research Organization for Nano and Life Innovation, Waseda University) ;
  • Aiko Nakao (Research Organization for Nano and Life Innovation, Waseda University) ;
  • Akari Nakai (Research Organization for Nano and Life Innovation, Waseda University) ;
  • Fujio Maeda (Research Organization for Nano and Life Innovation, Waseda University) ;
  • Seiichi Kobayashi (Research Organization for Nano and Life Innovation, Waseda University) ;
  • Tetsuya Osaka (Research Organization for Nano and Life Innovation, Waseda University)
  • 투고 : 2023.06.01
  • 심사 : 2023.08.02
  • 발행 : 2023.11.30

초록

In lithium-sulfur (Li-S) batteries, encapsulation of sulfur in activated carbon (AC) materials is a promising strategy for preventing the dissolution of lithium polysulfide into electrolytes and enhancing cycle life, because instead of solid-liquid-solid reactions, quasi-solid-state (QSS) reactions occur in the AC micropores. While a high weight fraction of sulfur in S/AC composites is essential for achieving a high energy density of Li-S cells, the deterioration mechanisms under such conditions are still unclear. In this study, we report the deterioration mechanisms during charge-discharge cycling when the discharge products overflow from the AC. Analysis using scanning electron microscopy and energy-dispersive X-ray spectrometry confirms that the sulfur in the S/AC composites migrates outside the AC as cycling progresses, and it is barely present in the AC after 20 cycles, which corresponds to the capacity decay of the cell. Impedance analysis clearly shows that the electrical resistance of the S/AC composite and the charge-transfer resistance of QSS reactions significantly increase as a result of sulfur migration. On the other hand, the charge-discharge cycling performance under limited-capacity conditions, where the discharge products are encapsulated inside the AC, is extremely stable. These results reveal the degradation mechanism of a Li-S cell with micro-porous carbon and provide crucial insights into the design of a S/AC composite cathode and its operating conditions needed to achieve stable cycling performance.

키워드

과제정보

The authors would like to thank Kuraray Chemical Co. (Japan) for providing YP-80F. This study was partially supported by the "Advanced Low-Cost Technology Research and Development Program, Specially Promoted Research for Innovative Next Generation Batteries" (ALCA-SPRING) from the Japan Science and Technology Agency (JST), Japan.

참고문헌

  1. J. E. Knoop and S. Ahn, J. Energy Chem., 2020, 47, 86-106. https://doi.org/10.1016/j.jechem.2019.11.018
  2. N. Nakamura, S. Ahn, T. Momma, and T. Osaka, J. Power Sources, 2023, 558, 232566.
  3. Y. Liu, Y. Elias, J. Meng, D. Aurbach, R. Zou, D. Xia, and Q. Pang, Joule, 2021, 5(9), 2323-2364. https://doi.org/10.1016/j.joule.2021.06.009
  4. H. Pan, X. Wei, W. A. Henderson, Y. Shao, J. Chen, P. Bhattacharya, J. Xiao, and J. Liu, Adv. Energy Mater., 2015, 5(16), 1500113.
  5. E. Markevich, G. Salitra, Y. Talyosef, F. Chesneua, and D. Aurbach, J. Electrochem. Soc., 2017, 164, A6244.
  6. D.-W. Wang, G. Zhou, F. Li, K.-H. Wu, G. Q. Lu, H.-M. Cheng, and I. R. Gentle, Phys. Chem. Chem. Phys., 2012, 14, 8703-8710. https://doi.org/10.1039/c2cp40808b
  7. R. Dominko, A. Vizintin, G. Aquilanti, L. Stievano, M. J. Helen, A. R. Munnangi, M. Fichtner, and I. Arcon, J. Electrochem. Soc., 2018, 165, A5014.
  8. G. Li, H. Jing, H. Li, L. Liu, Y. Wang, C. Yuan, H. Jiang, and L. Chen, Ionics, 2015, 21, 2161-2170. https://doi.org/10.1007/s11581-015-1414-2
  9. Z. Li, L. Yuan, Z. Yi, Y. Sun, Y. Liu, Y. Jiang, Y. Shen, Y. Xin, Z. Zhang, and Y. Huang, Adv. Energy Mater., 2014, 4, 1301473.
  10. B. Zhang, X. Qin, G. R. Li, and X. P. Gao, Energy Environ. Sci., 2010, 3, 1531-1537. https://doi.org/10.1039/c002639e
  11. D.-W. Wang, Q. Zeng, G. Zhou, L. Yin, F. Li, H.-M. Cheng, I. R. Gnetle, and G. Q. M. Lu, J. Mater. Chem. A, 2013, 1, 9382-9394. https://doi.org/10.1039/c3ta11045a
  12. M. Helen, T. Diemant, S. Schindler, R. Behm, M. Danzer, U. Kaiser, M. Fichtner, and M. A. Reddy, ACS Omega, 2018, 3(9), 11290-11299. https://doi.org/10.1021/acsomega.8b01681
  13. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P. L. Taberna, Science, 2006, 313, 1760-1763. https://doi.org/10.1126/science.1132195
  14. X. Ji, K. T. Lee, and L. F. Nazar, Nat. Mater., 2009, 8, 500-506. https://doi.org/10.1038/nmat2460
  15. X. Li, Y. Cao, W. Qi, L. V. Saraf, J. Xiao, Z. Nie, J. Mietek, J.-G. Zhang, B. Schwenzera, and J. Liu, J. Mater. Chem., 2011, 21, 16603-16610. https://doi.org/10.1039/c1jm12979a
  16. Kuraray, product specification of YP-80F can be found under https://www.calgoncarbon.com/app/uploads/YPbrochure-draft_final_08_2019.pdf.
  17. A. Nakanishi, K. Ueno, D. Watanabe, Y. Ugata, Y. Matsumae, J. Liu, M. L. Thomas, K. Dokko, and M. Watanabe, J. Phys. Chem. C, 2019, 123(23), 14229-14238. https://doi.org/10.1021/acs.jpcc.9b02625
  18. N. Togasaki, T. Yokoshima, and T. Osaka, J. Electrochem. Soc., 2022, 169, 030547.
  19. N. Togasaki, T. Yokoshima, and T. Osaka, J. Electrochem. Soc., 2021, 168, 070525.
  20. N. Togasaki, T. Yokoshima, Y. Oguma, and T. Osaka, J. Electrochem. Sci. Technol., 2021, 12(4), 415-423. https://doi.org/10.33961/jecst.2021.00115
  21. N. Togasaki, T. Yokoshima, Y. Oguma, and T. Osaka, J. Power Sources, 2020, 461, 228168.
  22. J. Xu, R. Jin, X. Ren, and G. Gao, Chem. Eng. J., 2021, 413, 127446.
  23. A. Laheaar, A. Arenillas, and F. Beguin, J. Power Sources, 2018, 396, 220-229. https://doi.org/10.1016/j.jpowsour.2018.06.009
  24. M. Helen, M. A. Reddy, T. Diemant, U. Golla-Schindler, R. J. Behm, U. Kaiser, and M. Fichtner, Sci. Rep., 2015, 5, 12146.
  25. Q. Guo, K. C. Lau, and R. Pandey, J. Phys. Chem. C, 2019, 123, 4674-4681. https://doi.org/10.1021/acs.jpcc.8b11290
  26. Y.-S. Su, Y. Fu, T. Cochell, and A. Manthiram, Nat. Commun., 2013, 4, 2985.
  27. M. Adamic, S. D. Talian, A. R. Sinigoj, I. Humar, J. Moskon, and M. Gaberscek, J. Electrochem. Soc., 2018, 166, A5045.
  28. S. D. Talian, J. Moskon, R. Dominko, and M. Gaberscek, Adv. Mater. Interfaces, 2022, 9(8), 2101116.
  29. Y.-W. Song, Y.-Q. Peng, M. Zhao, Y. Lu, J.-N. Liu, B.-Q. Li, and Q. Zhang, Small Science, 2021, 1(11), 2100042.
  30. S. Walus, C. Barchasz, R. Bouchet, and F. Alloin, Electrochim. Acta, 2020, 359, 136944.
  31. M. Gerle, N. Wagner, J. Hacker, M. Nojabaee, and K. A. Friedrich, J. Electrochem. Soc., 2022, 169, 030505.
  32. Z. Deng, Z. Zhang, Y. Lai, J. Liu, J. Li, and Y. Liu, J. Electrochem. Soc., 2013, 160, A553.
  33. D. Capkova, V. Knap, A. S. Fedorkova, and D.-I. Store, J. Energy Chem., 2022, 72, 318-325. https://doi.org/10.1016/j.jechem.2022.05.026
  34. J. Conder, C. Villevieille, S. Trabesinger, P. Novak, L. Gubler, and R. Bouchet, Electrochim. Acta, 2017, 244, 61-68. https://doi.org/10.1016/j.electacta.2017.05.041
  35. S. D. Talian, J. Bobnar, A. R. Sinigoj, A. R. Sinigoj, I. Humar, and M. Gaberscek, J. Phys. Chem. C, 2019, 123(46), 27997-28007. https://doi.org/10.1021/acs.jpcc.9b05887
  36. N. A. Canas, K. Hirose, B. Pascucci, N. Wagner, K. A. Friedrich, and R. Hiesgen, Electrochim. Acta, 2013, 97, 42-51. https://doi.org/10.1016/j.electacta.2013.02.101
  37. N. Togasaki, A. Nakao, T. Tanaka, U. Harada, H. Onish, H. Yasuda, S. Kobayashi, F. Maeda, and T. Osaka, J. Electrochem. Soc., 2023, 170, 050519.