DOI QR코드

DOI QR Code

Effect of Zinc Addition in Filler Metal on Sacrificial Anode Cathodic Protection of Fin-Tube Aluminum Heat Exchanger

  • Yoon-Sik So (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Eun-Ha Park (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Jung-Gu Kim (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
  • 투고 : 2023.05.16
  • 심사 : 2023.08.02
  • 발행 : 2023.11.30

초록

This study investigated the tri-metallic galvanic coupling of different metals in the tubes, fillers, and fins of a heat exchanger. The goal was to prevent corrosion of the tubes using the fin as a sacrificial anode while ensuring that the filler metal has a more noble potential than the fin, to avoid detachment. The metals were arranged in descending order of corrosion potential, with the noblest potential assigned to the tube, followed by the filler metal and the fin. To address a reduction in protection current of the fin, the filler metal was modified by adding Zn to decrease its corrosion potential. However, increasing the Zn content of filler metal also increases its corrosion current. The study examined three different filler metals, considering their corrosion potential, and kinetics. The results suggest that a filler metal with 1.5 wt.% Zn addition is optimal for providing cathodic protection to the tube while reducing the reaction rate of the sacrificial anode.

키워드

과제정보

This research was supported by the Sungkyunkwan University and the BK21 FOUR (Graduate School Innovation) funded by the Ministry of Education (Korea) and National Research Foundation of Korea (NRF).

참고문헌

  1. A. C. caket, C. Wang, M. A. Nugroho, H. Celik, and M. Mobedi, Renew. Sust. Energy Rev., 2022, 167, https://doi.org/10.1016/j.rser.2022.112697 
  2. M. G. Schmidt, H. H. Attaway, S. Terzieva, A. Marshall, L. L. Steed, D. Salzberg, H. A. Hamoodi, J. A. Khan, C. E. Feigley, and H. J. Michels, Curr. Microbiol., 2012, 65(2), 141-149.  https://doi.org/10.1007/s00284-012-0137-0
  3. D. Junqi, Z. Yi, L. Gengtian, and X. Weiwu, Exp. Heat Tranf., 2013, 26(4), 384-396.  https://doi.org/10.1080/08916152.2012.694010
  4. A. Burlacu, G. Sosoi, R. ?. Vizitiu, M. Barbu?a, C. D. Lazarescu, V. Ciocan, and A. ?erbanoiu, Procedia Manuf., 2018, 22, 714-721.  https://doi.org/10.1016/j.promfg.2018.03.103
  5. H. Fugmann, E. Laurenz, and L. Schnabel, Energies, 2017, 10(9), 1341. 
  6. A. Nuntaphan, S. Vithayasai, N. Vorayos, N. Vorayos, and T. Kiatsiriroat, Int. Commun. Heat Mass Transf., 2010, 37(3), 287-292.  https://doi.org/10.1016/j.icheatmasstransfer.2009.11.006
  7. K. M. Shirvan, R. Ellahi, S. Mirzakhanlari, and M. Mamourian, Appl. Therm. Eng., 2016, 109, 761-774.  https://doi.org/10.1016/j.applthermaleng.2016.08.116
  8. J. Zhang, X. Zhu, M. E. Mondejar, and F. Haglind, Renew. Sustain. Energy Rev., 2019, 101, 305-328.  https://doi.org/10.1016/j.rser.2018.11.017
  9. X. Guo, Y. Fan, and L. Luo, Energy, 2014, 69, 728-741.  https://doi.org/10.1016/j.energy.2014.03.069
  10. F.-J. Chen, C. Yao, and Z.-G. Yang, Eng. Fail. Anal., 2014, 37, 42-52.  https://doi.org/10.1016/j.engfailanal.2013.11.002
  11. M. S. Hong, I. J. Park, and J. G. Kim, Met. Mater. Int., 2017, 23, 708-714.  https://doi.org/10.1007/s12540-017-6589-9
  12. B. Badenes, B. Sanner, M. A. M. Pla, J. M. Cuevas, F. Bartoli, F. Ciardelli, R. M. Gonzalez, A. N. Ghafar, P. Fontana, L. L. Zuniga, and J. F. Urchueguia, Energy, 2020, 201, 117628. 
  13. K. Iijima, T. Miura, Y. Hasegawa, Y. Baba, Z. Tanabe, and M. Hagiwara, SAE Transaction, 1986, 95, 482-488. https://www.jstor.org/stable/44721674 
  14. M. Pech-Canul, J. C. Guia-Tello, M. I. Pech-Canul, J. C. Aguilar, J. A. Gorocica-Diaz, R. Arana-Guillen, and J. Puch-Bleis, Results Phys., 2017, 7, 1760-1777.  https://doi.org/10.1016/j.rinp.2017.05.008
  15. S.-J. Ko, J.-H. An, Y.-S. Kim, and J.-G. Kim, Eng. Fail. Anal., 2019, 98, 167-176.  https://doi.org/10.1016/j.engfailanal.2019.01.030
  16. L. Shi, Y. Song, P. Zhao, H. Wang, K. Dong, D. Shan, and E.-H. Han, Electrochim. Acta, 2020, 359, 136947. 
  17. R. Akid and D. J. Mills, Corros. Sci., 2001, 43(7), 1203-1216.  https://doi.org/10.1016/S0010-938X(00)00091-3
  18. L. Shi, Y. Song, K. Dong, H. Wang, D. Shan, and E.-H. Han, Corros. Sci., 2021, 184, 109400. 
  19. C. Vargel, Corrosion of Aluminium, Elsevier, 2020, 149-153. 
  20. Z.-Z. Yan, Q.-H. Zhang, H.-R. Cai, X.-R. Li, L.-K. Wu, Z.-Z. Luo, and F.-H. Cao, Corros. Sci., 2022, 206, 110541. 
  21. Y.-S. Kim, I.-J. Park, and J.-G. Kim, Metals, 2019, 9(3), 376. 
  22. Y. Tang, L. Lu, H. W. Roesky, L. Wang, and B. Huang, J. Power Sources, 2004, 138(1-2), 313-318.  https://doi.org/10.1016/j.jpowsour.2004.06.043
  23. S. Khireche, D. Boughrara, A. Kadri, L. Hamadou, and N. Benbrahim, Corros. Sci., 2014, 87, 504-516.  https://doi.org/10.1016/j.corsci.2014.07.018
  24. M. A. Amin, S. S. Abd El-Rehim, E. E. F. El-Sherbini, S. R. Mahmoud, and M. N. Abbas, Electrochim. Acta, 2009, 54(18), 4288-4296.  https://doi.org/10.1016/j.electacta.2009.02.076
  25. Q. F. Hu, T. Zhang, S. J. Geng, and F. H. Wang, Mater. Corros., 2017, 68(9), 935-942.  https://doi.org/10.1002/maco.201609358
  26. J. Liu, X. Huang, Y. Ren, L. M. Wong, H. Liu, and S. Wang, Sci. Rep., 2022, 12, 4532. 
  27. K. Thekkepat, H.-S. Han, J.-W. Choi, S.-C. Lee, E. S. Yoon, G. Li, H.-K. Seok, Y.-C. Kim, J.-H. Kim, and P.-R. Cha, J. Magnes. Alloys, 2022, 10(7), 1972-1980.  https://doi.org/10.1016/j.jma.2021.06.019
  28. T. Kosaba, I. Muto, and Y. Sugawara, J. Electrochem. Soc., 2022, 169, 020550. 
  29. J. Hazarika, A. Gupta, and P. V. Rajaraman, ECS J. Solid State Sci. Technol., 2022, 11, 054007. 
  30. K. Kondoh, R. Takei, S. Kariya, S. Li, and J. Umeda, Mater. Lett., 2022, 319, 132266. 
  31. D. A. Jones, Principles and Prevention of Corrosion, 2nd ed., Prentice-Hall, USA, 1992, 86-92. 
  32. G. Song, B. Johannesson, S. Hapugoda, and D. StJohn, Corros. Sci., 2004, 46(4), 955-977.  https://doi.org/10.1016/S0010-938X(03)00190-2
  33. M.-C. Zhao, M. Liu, G. L. Song, and A. Atrens, Adv. Eng. Mater., 2008, 10(1-2), 104-111.  https://doi.org/10.1002/adem.200700246
  34. Y.-S. So, J.-M. Lim, N. T. Chung, and J.-G. Kim, Corrosion, 2023, 79(7), 790-801.  https://doi.org/10.5006/4319
  35. F. N. Afshar, J. H. W. de Wit, H. Terryn, and J. M. C. Mol, Corros. Sci., 2012, 58, 242-250.  https://doi.org/10.1016/j.corsci.2012.01.030
  36. Y.-S. Kim, J. G. Park, B.-S. An, Y. H. Lee, C.-W. Yang, and J.-G. Kim, Materials, 2018, 11(10), 1982. 
  37. R. A. Adey and S. M. Niku, Computer modelling of galvanic corrosion, In: H. P. Hack (ed.), Galvanic corrosion, ASTM STP 978, American Society for Testing and Materials, PA, USA, 1988, 96-117. 
  38. P. Biswas, S. Patra, and M. K. Mondal, Int. J. Cast Met. Res., 2020, 33(2-3), 134-145.  https://doi.org/10.1080/13640461.2020.1769319
  39. Q. Miao, D. Wu, D. Chai, Y. Zhan, G. Bi, F. Niu, and G. Ma, Mater. Des., 2020, 186, 108205. 
  40. A. G. Munoz, S. B. Saidman, and J. B. Bessone, Corros. Sci., 2002, 44(10), 2171-2182.  https://doi.org/10.1016/S0010-938X(02)00042-2
  41. M. Nestoridi, D. Pletcher, R. J. K. Wood, S. Wang, R. L. Jones, K. R. Stokes, and I. Wilcock, J. Power Sources, 2008, 178(1), 445-455.  https://doi.org/10.1016/j.jpowsour.2007.11.108
  42. M. Qian, D. Li, S. B. Liu, and S. L. Gong, Corros. Sci., 2010, 52(10), 3554-3560.  https://doi.org/10.1016/j.corsci.2010.07.010
  43. D. Jiang and J. Yu, J. Mater. Res. Technol., 2019, 8(3), 2930-2943.  https://doi.org/10.1016/j.jmrt.2019.05.001
  44. S.-I. Pyun and W.-J. Lee, Corros. Sci., 2001, 43(2), 353-363.  https://doi.org/10.1016/S0010-938X(00)00077-9
  45. W. Choi, H.-C. Shin, J. M. Kim, J.-Y. Choi, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(1), 1-13.  https://doi.org/10.33961/jecst.2019.00528
  46. Y.-P. Xiao, Q.-L. Pan, W.-B. Li, X.-Y. Liu, and Y.-B. He, Mater. Des., 2011, 32(4), 2149-2156.  https://doi.org/10.1016/j.matdes.2010.11.036
  47. K. Mizuno, A. Nylund, and I. Olefjord, Corros. Sci., 2001, 43(2), 381-396.  https://doi.org/10.1016/S0010-938X(00)00069-X
  48. V. Guillaumin and G. Mankowski, Corros. Sci., 2000, 42(1), 105-125.  https://doi.org/10.1016/S0010-938X(99)00053-0
  49. S. B. Saidman, A. G. Munoz, and J. B. Bessone, J. Appl. Electrochem., 1999, 29, 245-251.  https://doi.org/10.1023/A:1003487808354
  50. C. B. Breslin and L. P. Friery, Corros. Sci., 1994, 36(2), 231-240.  https://doi.org/10.1016/0010-938X(94)90155-4
  51. P. M. Natishan, E. McCafferty, and G. K. Hubler, J. Electrochem. Soc., 1988, 135, 321, 
  52. M. Itagaki, A. Taya, K. Watanabe, and K. Noda, Anal. Sci., 2002, 18, 641-644.  https://doi.org/10.2116/analsci.18.641
  53. S. M. A. Shibli and S. George, Appl. Surf. Sci., 2007, 253(18), 7510-7515.  https://doi.org/10.1016/j.apsusc.2007.03.052
  54. Y. Deng, Z. Yin, K. Zhao, J. Duan, J. Hu, and Z. He, Corros. Sci., 2012, 65, 288-298.  https://doi.org/10.1016/j.corsci.2012.08.024
  55. G. S. Frankel, Fundamentals of corrosion kinetics, In: A. Hughes, J. Mol, M. Zheludkevich, and R. Buchheit (eds), Active protective coatings, Springer, Netherlands, 2016, 17-32.