DOI QR코드

DOI QR Code

Pulse Electrodeposition of Polycrystalline Si Film in Molten CaCl2 Containing SiO2 Nanoparticles

  • Taeho Lim (Department of Chemical Engineering, Soongsil University) ;
  • Yeosol Yoon (Department of Chemical Engineering, Soongsil University)
  • Received : 2023.04.21
  • Accepted : 2023.07.04
  • Published : 2023.11.30

Abstract

The high cost of Si-based solar cells remains a substantial challenge to their widespread adoption. To address this issue, it is essential to reduce the production cost of solar-grade Si, which is used as raw material. One approach to achieve this is Si electrodeposition in molten salts containing Si sources, such as SiO2. In this study, we present the pulse electrodeposition of Si in molten CaCl2 containing SiO2 nanoparticles. Theoretically, SiO2 nanoparticles with a diameter of less than 20 nm in molten CaCl2 at 850℃ have a comparable diffusion coefficient with that of ions in aqueous solutions at room temperature. However, we observed a slower-than-expected diffusion of the SiO2 nanoparticles, probably because of their tendency to aggregate in the molten CaCl2. This led to the formation of a non-uniform Si film with low current efficiency during direct current electrodeposition. We overcome this issue using pulse electrodeposition, which enabled the facile supplementation of SiO2 nanoparticles to the substrate. This approach produced a uniform and thick electrodeposited Si film. Our results demonstrate an efficient method for Si electrodeposition in molten CaCl2 containing SiO2 nanoparticles, which can contribute to a reduction in production cost of solar-grade Si.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF2019R1F1A1058899). This work was also supported by the Korea Institute of Science and Technology (No. 2E31871).

References

  1. C. Battaglia, A. Cuevas, and S. D. Wolf, Energy Environ. Sci., 2016, 9, 1552-1576. https://doi.org/10.1039/C5EE03380B
  2. N. M. Haegel, R. Margolis, T. Buonassisi, D. Feldman, A. Froitzheim, R. Garabedian, M. Green, S. Glunz, H. M. Henning, B. Holder, I. Kaizuka, B. Kroposki, K. Matsubara, S. Niki, K. Sakurai, R. A. Schindler, W. Tumas, E. R. Weber, G. Wilson, M. Woodhouse, and S. Kurtz, Science, 2017, 356, 141-143. https://doi.org/10.1126/science.aal1288
  3. R. Knoblauch, D. Boing, W. L. Weingaertner, K. Wegener, F. Kuster, and F. A. Xavier, Wear, 2018, 414-415, 50-58. https://doi.org/10.1016/j.wear.2018.07.025
  4. U. Cohen, J. Electron. Mater., 1977, 6, 607-643. https://doi.org/10.1007/BF02660341
  5. G. M. Rao, D. Elwell, and R. S. Feigelson, J. Electrochem. Soc., 1981, 128, 1708.
  6. Y. P. Zaykov, S. I. Zhuk, A. V. Isakov, O. V. Grishenkova, and V. A. Isaev, J. Solid State Electrochem., 2015, 19, 1341-1345. https://doi.org/10.1007/s10008-014-2729-z
  7. G. M. Haarberg, L. Famiyeh, A. M. Martinez, and K. S. Osen, Electrochim. Acta, 2013, 100, 226-228. https://doi.org/10.1016/j.electacta.2012.11.052
  8. T. Nohira, K. Yasuda, and Y. Ito, Nat. Mater., 2003, 2, 397-401. https://doi.org/10.1038/nmat900
  9. W. Xiao, X. Jin, Y. Deng, D. Wang, X. Hu, and G. Z. Chen, Chemphyschem, 2006, 7(8), 1750-1758. https://doi.org/10.1002/cphc.200600149
  10. W. Xiao and D. Wang, Chem. Soc. Rev., 2014, 43, 3215-3228. https://doi.org/10.1039/c3cs60327j
  11. X. Yang, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma, J. Electrochem. Soc., 2014, 161, D3116.
  12. W. Xiao, X. Jin, and G. Z. Chen, J. Mater. Chem. A, 2013, 1, 10243-10250. https://doi.org/10.1039/c3ta11823a
  13. S. K. Cho, F.-R. F. Fan, and A. J. Bard, Angew. Chem. Int. Ed., 2012, 51(51), 12740-12744. https://doi.org/10.1002/anie.201206789
  14. J. Zhao, H. Yin, T. Lim, H. Xie, H.-Y. Hsu, F. Forouzan, and A. J. Bard, J. Electrochem. Soc., 2016, 163, D506.
  15. X. Yang, L. Ji, X. Zou, T. Lim, J. Zhao, E. T. Yu, and A. J. Bard, Angew. Chem. Int. Ed., 2017, 56(47), 15078-15082. https://doi.org/10.1002/anie.201707635
  16. X. Zou, L. Ji, J. Ge, D. R. Sadoway, E. T. Yu, and A. J. Bard, Nat. Commun., 2019, 10, 5772.
  17. K. Yasuda, T. Nohira, Y. H. Ogata, and Y. Ito, Electrochim. Acta, 2005, 51(3), 561-565. https://doi.org/10.1016/j.electacta.2005.05.014
  18. P. Gao, X. Jin, D. Wang, X. Hu, and G. Z. Chen, J. Electroanal. Chem., 2005, 579(2), 321-328. https://doi.org/10.1016/j.jelechem.2005.03.004
  19. S. K. Cho, F.-R. F. Fan, and A. J. Bard, Electrochim. Acta, 2012, 65, 57-63. https://doi.org/10.1016/j.electacta.2012.01.008
  20. S. Wang, F. Zhang, X. Liu, and L. Zhang, Thermochim. Acta, 2008, 470(1-2), 105-107. https://doi.org/10.1016/j.tca.2008.02.007
  21. E. C. Garnett and P. Yang, J. Am. Chem. Soc., 2008, 130(29), 9224-9225. https://doi.org/10.1021/ja8032907
  22. A. S. Kale, W. Nemeth, H. Guthrey, S. U. Nanayakkara, V. LaSalvia, S. Theingi, D. Findley, M. Page, M. AlJassim, D. L. Young, P. Stradins, and S. Agarwal, ACS Appl. Mater. Interfaces, 2019, 11(45), 42021-42031. https://doi.org/10.1021/acsami.9b11889
  23. J. Tang and K. Azumi, Electrochim. Acta, 2011, 56(3), 1130-1137. https://doi.org/10.1016/j.electacta.2010.10.056
  24. D. Prutsch, M. Wilkening, and I. Hanzu, RSC Adv., 2016, 6, 98243-98247. https://doi.org/10.1039/C6RA19209B
  25. T. Toba, K. Yasuda, T. Nohira, X. Yang, R. Hagiwara, K. Ichitsubo, K. Masuda, and T. Homma, Electrochemistry, 2013, 81(7), 559-565. https://doi.org/10.5796/electrochemistry.81.559
  26. D. R. Lide (ed.), CRC Handbook of Chemistry and Physics, Internet Version 2005, , CRC Press, Boca Raton, FL, 2005.
  27. J. M. Westra, V. Vavrunkova, P. Sutta, R. A. C. M. M. van Swaaij, and M. Zeman, Energy Procedia, 2010, 2(1), 235-241. https://doi.org/10.1016/j.egypro.2010.07.034