DOI QR코드

DOI QR Code

Improved Performance of Lithium-Ion Batteries using a Multilayer Cathode of LiFePO4 and LiNi0.8Co0.1Mn0.1O2

  • Hyunchul Kang (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Youngjin Kim (Department of Battery Convergence Engineering, Kangwon National University) ;
  • Taeho Yoon (School of Chemical Engineering, Yeungnam University) ;
  • Junyoung Mun (Department of Energy and Chemical Engineering, Incheon National University)
  • Received : 2023.04.21
  • Accepted : 2023.05.24
  • Published : 2023.11.30

Abstract

In Li-ion batteries, a thick electrode is advantageous for lowering the inactive current collector portion and obtaining a high energy density. One of the critical failure mechanisms of thick electrodes is inhomogeneous lithiation and delithiation owing to the axial location of the electrode. In this study, it was confirmed that the top layer of the composite electrode contributes more to the charging step owing to the high ionic transport from the electrolyte. A high-loading multilayered electrode containing LiFePO4 (LFP) and LiNi0.8Co0.1Mn0.1O2 (NCM811) was developed to overcome the inhomogeneous electrochemical reactions in the electrode. The electrode laminated with LFP on the top and NCM811 on the bottom showed superior cyclability compared to the electrode having the reverse stacking order or thoroughly mixed. This improvement is attributed to the structural and interfacial stability of LFP on top of the thick electrode in an electrochemically harsh environment.

Keywords

Acknowledgement

This work was supported by the Technology Innovation Program (20010900 and 20011173) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). This work was supported by the ICT R&D program of MSIT/IITP (RS-2023-00221723). T. Yoon was supported by the 2022 Yeungnam University Research Grant.

References

  1. D. Larcher and J. M. Tarascon, Nature Chem., 2015, 7, 19-29. https://doi.org/10.1038/nchem.2085
  2. V.-C. Ho, S. Jeong, T. Yim, and J. Mun, J. Power Sources, 2020, 450, 227625.
  3. J. B. Goodenough, Energy Environ. Sci., 2014, 7, 14-18. https://doi.org/10.1039/C3EE42613K
  4. M. G. Ha, Y. Na, H. Y. Park, H.-J. Kim, J. Song, S. J. Yoo, Y.-T. Kim, H. S. Park, and J. H. Jang, J. Electrochem. Sci. Technol., 2021, 12(4), 406-414. https://doi.org/10.33961/jecst.2021.00220
  5. A. Tron, and J. Mun, J. Electrochem. Sci. Technol., 2021, 13(1), 90-99 https://doi.org/10.33961/jecst.2021.00577
  6. S. Jeong, K. Choi, V.-C. Ho, J. Cho, J.-S. Bae, S. C. Nam, T. Yim, and J. Mun, Chem. Eng. J., 2022, 434, 134577.
  7. O. B. Chae and B. L. Lucht, Adv. Energy Mater., 2023, 13(14), 2203791.
  8. A. Manthiram. Nat. Commun., 2020, 11, 1550.
  9. Y. Kim, W. M. Seong, and A. Manthiram, Energy Storage Mater., 2021, 34, 250-259. https://doi.org/10.1016/j.ensm.2020.09.020
  10. W. M. Seong and A. Manthiram, ACS Appl. Mater. Interfaces, 2020, 12(39), 43653-43664. https://doi.org/10.1021/acsami.0c11413
  11. H. D. Yoo, E. Markevich, G. Salitra, D. Sharon, and D. Aurbach, Mater. Today, 2014, 17(3), 110-121. https://doi.org/10.1016/j.mattod.2014.02.014
  12. Y. Kim, H. Park, A. Dolocan, J. H. Warner, and A. Manthiram, ACS Appl. Mater. Interfaces, 2021, 13(23), 27096-27105. https://doi.org/10.1021/acsami.1c06277
  13. E. Yoon, J. Lee, S. Byun, D. Kim, and T. Yoon. Adv. Funct. Mater., 2022, 32, 2200026.
  14. S. H. Jang, J. Mun, D.-K. Kang, and T. Yim, J. Electrochem. Sci. Technol., 2017, 8(2), 162-168. https://doi.org/10.33961/JECST.2017.8.2.162
  15. H. Kim, T. H. Kim, S. S. Park, M. S. Kang, and G. Jeong, ACS Appl. Mater. Interfaces, 2021, 13(37), 44348-44357. https://doi.org/10.1021/acsami.1c12240
  16. T. Yoon, J. Soon, T. J. Lee, J. H. Ryu, and S. M. Oh, J. Power Sources, 2021, 503, 230051.
  17. O. B. Chae, L. Rynearson, and B. L. Lucht, ACS Energy Lett., 2022, 7(9), 3087-3094. https://doi.org/10.1021/acsenergylett.2c01390
  18. Y. Kim, H. Kim, and A. Manthiram, J. Power Sources, 2023, 558, 232633.
  19. H. Kim, S. K. Oh, J. Lee, S. W. Doo, Y. Kim, and K. T. Lee, Electrochim. Acta, 2021, 370, 137743. https://doi.org/10.1016/j.electacta.2021.137743
  20. Y. Kim, H. Park, K. Shin, G. Henkelman, J. H. Warner, and A. Manthiram, Adv. Energy Mater., 2021, 11(38), 2101112.
  21. S. Jeong, J. H. Park, S. Y. Park, J. Kim, K. T. Lee, Y. D. Park, and J. Mun, ACS Appl. Mater. Interfaces, 2021, 13(19), 22475-22484. https://doi.org/10.1021/acsami.1c03680
  22. Y. Kim, H. Park, J. H. Warner, and A. Manthiram, ACS Energy Lett., 2021, 6(3), 941-948. https://doi.org/10.1021/acsenergylett.1c00086
  23. K.-Y. Park, J.-W. Park, W. M. Seong, K. Yoon, T.-H. Hwang, K.-H. Ko, J.-H. Han, Y. Jaedong, and K. Kang, J. Power Sources, 2020, 468, 228369. https://doi.org/10.1016/j.jpowsour.2020.228369
  24. H. Kang, Y. M. Kim, B. K. Park, J. H. Yang, S. Jeong, K. J. Kim, and J. Mun, Int. J. Energy Res., 2022, 46(15), 23973-23983. https://doi.org/10.1002/er.8694
  25. A. Tron, S. Jeong, Y. D. Park, and J. Mun, ACS Sustainable Chem. Eng., 2019, 7(17), 14531-14538. https://doi.org/10.1021/acssuschemeng.9b02042
  26. A. Tron, Y. D. Park, and J. Mun, Solid State Sci., 2020, 101, 106152.
  27. V.-C. Ho, H. An, M. Hong, S. Lee, J. Kim, M. B. Park, and J. Mun, Energy Technol., 2021, 9(2), 2000800. https://doi.org/10.1002/ente.202000800
  28. F. Schipper, E. M. Erickson, C. Erk, J.-Y. Shin, F. F. Chesneau, and D. Aurbach, J. Electrochem. Soc., 2017, 164, A6220.