DOI QR코드

DOI QR Code

Size-based Separation of Yeast Cell by Surface Acoustic Wave-induced Acoustic Radiation Force

음향방사력을 이용한 효모세포의 크기별 분리

  • Raihan Hadi Julio (Department of Mechanical Engineering, Chonnam National University) ;
  • Muhammad Soban Khan (Department of Mechanical Engineering, Chonnam National University) ;
  • Mushtaq Ali (Department of Mechanical Engineering, Chonnam National University) ;
  • Ghulam Destgeer (Department of Electrical Engineering, Technical University of Munich) ;
  • Jinsoo Park (Department of Mechanical Engineering, Chonnam National University)
  • Received : 2023.10.10
  • Accepted : 2023.11.28
  • Published : 2023.11.30

Abstract

The yeast Saccharomyces cerevisiae (S. cerevisiae) is considered an ideal eukaryotic model and has long been recognized for its pivotal role in numerous industrial production processes. Depending on the cell cycle phases, microenvironment, and species, S. cerevisiae varies in shape and has different sizes of each shape such as singlets, doublets, and clusters. Obtaining high-purity populations of uniformly shaped S. cerevisiae cells is crucial in fundamental biological research and industrial operations. In this study, we propose an acoustofluidic method for separating S. cerevisiae cells based on their size using surface acoustic wave (SAW)-induced acoustic radiation force (ARF). The SAW-induced ARF increased with cell diameter, which enabled a successful size-based separation of S. cerevisiae cells using an acoustofluidics device. We anticipate that the proposed acoustofluidics approach for yeast cell separation will provide new opportunities in industrial applications.

Keywords

Acknowledgement

This work was financially supported by ChonnamNational University (Grant number: 2023-1161-01) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00210891). The microfluidic devices were fabricated by using a mask aligner (MDA-400S, MIDAS) at Energy Convergence Core Facility in Chonnam National University.

References

  1. Nathalie B., Sarah R., Hugo R., Fanny G., Pascal V., Mickael B., Mickael D., 2023, "Saccharomyces cerevisiae: Multifaceted Applications in One Health and the Achievement of Sustainable Development Goals.", Encyclopedia, Vol. 3(2), pp.602~613. https://doi.org/10.3390/encyclopedia3020043
  2. Maria P., Anastasios V., Amalia-Sofia., Efstathios H., 2020, "Saccharomyces cerevisiae and Its Industrial Applications.", Microbiology, Vol. 6(1), pp.1~31.
  3. Elena I. S., Sergey P. Z., Andrey R. S., Anna Y. A., 2023, "Practical Approaches for the Yeast Saccharomyces cerevisiae Genome Modification.", International Journal of Molecular Sciences, Vol 24(15). pp.1~33. https://doi.org/10.3390/ijms241511960
  4. Sideney B. O., Ivan C. B., Dirceu A., Douglas R., 2017, "Chemical Composition of the Biomass of Saccharomyces cerevisiae - (Meyen ex E. C. Hansen, 1883) Yeast Obtained From the Beer Manufacturing Process.", International Journal of Environment, Agriculture, and Biotechnology (IJEAB), Vol. 2, pp. 558~562. https://doi.org/10.22161/ijeab/2.2.2
  5. Aashiq H. K., Michelle V., Brittany M. G., Mudabir A., 2022, "Humanized Yeast to Model Human Biology, Disease, and Evolution.", Dis Model Mech. Vol. 15(6), pp.1~13. https://doi.org/10.1242/dmm.049309
  6. Ping L., Hangrui L., Dan Y., Daniel J., Sheng Y., Ming L., 2021, "Separation and Enrichment of Yeast Saccharomyces cerevisiae by Shape Using Viscoelastic Microfluidics.", Analytical Chemistry, Vol. 93(3), pp.1586~1595. https://doi.org/10.1021/acs.analchem.0c03990
  7. Matthew J. T., Sophie T., Xuebin B.Y., Jennifer K., 2012, "Cell Separation: Terminology and Practical Considerations.", Journal of Tissue Engineering, Vol. 4, pp.1~14. https://doi.org/10.1177/2041731412472690
  8. Muthusaravanan S., Ram K., Deenadayalan K.G., Yogesan M., Kumaravel K., 2020., "Active Microfluidic Systems for Cell Sorting and Separation.", Current Opinion in Biomedical Engineering, Vol. 13, pp.60~68. https://doi.org/10.1016/j.cobme.2019.09.014
  9. Yueyue Z., Tingting Z., Li W., Liang F., Min W., Zhenchao Z., Huanhuan F., 2021., "From Passive to Active Sorting in Microfluidics: A Review.", Rev. Adv. Mater. Sci, Vol.60, pp.313 ~324. https://doi.org/10.1515/rams-2020-0044
  10. Eliezer K., Ayelet C. A., Aaron C., Alexander I. A., Reshef M., Merav C., Dana R., Daniel K., Yaakov N., 2018, "High-Reynolds Microfluidic Sorting of Large Yeast Populations.", Scientific Reports, Vol 8(1), pp.1~13. https://doi.org/10.1038/s41598-018-31726-6
  11. Honeyeh M. E., Christian W., 2021, "Characterization and Separation of Live and Dead Yeast Cells Using CMOS-Based DEP Microfluidics.", Vol. 12(270), pp.1~19. https://doi.org/10.3390/mi12030270
  12. Muhammad A., Jinsoo P., Ghulam D., Husnain A., Syed A. I., Sanghee K., Sunghyun K., Anas A., Tae-Sung Y., Hyung J. S., 2020, "Acoustomicrofluidic Separation of Tardigrades from Raw Cultures for Sample Preparation.", Vol. 188(3), pp.809~819.
  13. Ghulam D., Byung H.H., Jinsoo P., Jin H.J., Anas A., Hyung J. S., 2015, "Microchannel Anechoic Corner for Size-Selective Separation and Medium Exchange via Traveling Surface Acoustic Waves.", Analytical Chemistry, Vol 87(9), pp.4627~4632. https://doi.org/10.1021/acs.analchem.5b00525
  14. Muhammad S. K., Mehmet A. S., Ghulam D., Jinsoo P., 2022, "Residue-Free Acoustofluidic Manipulation of Microparticles via Removal of Microchannel Anechoic Corner.", Ultrasonics Sonochemistry, Vol. 89, pp.1~10. https://doi.org/10.1016/j.ultsonch.2022.106161
  15. Mushtaq A., Beomseok C., Muhammad S. K., Hyunwoo J., Song H. L., Woohyuk K., Jeongu K., Jinsoo P., 2022, "Size-Based Separation of Microscale Droplets by Surface Acoustic Wave-Induced Acoustic Radiation Force.", Journal of the Korean Society of Visualization, Vol. 20(3), pp.19~26. https://doi.org/10.5407/JKSV.2022.20.3.019
  16. Mehmet A.S., Mushtaq A., Jinsoo P., Ghulam D., 2023, "Fundamentals of Acoustic Wave Generation and Propagation.", Acoustic Technologies in Biology and Medicine, First Edition, pp.1~36.
  17. Takahi H., Yosioka K., 1969., "Acoustic-Radiation Force on a Solid Elastic Sphere.", The Journal of the Acoustical Society of America, Vol. 46, pp.1139~1143. https://doi.org/10.1121/1.1911832
  18. Husnain A., Ghulam D., Ashar A., Kwangseok P., Jinsoo P., Jin H. J., Hyung J. S., 2017, "A Pumpless Acoustomicrofluidic Stage for the Size-Selective Concentration and Separation of Microparticles.", Analytical Chemistry, Vol. 89, pp.13575~13581. https://doi.org/10.1021/acs.analchem.7b04014