DOI QR코드

DOI QR Code

Aggregation-Induced Emission (AIE) 기반의 Turn-On 형광센서를 이용한 수질 속 중금속 납 이온의 효율적인 검출

Efficient Detection of Heavy Metal Lead Ions in Aqueous Media using Aggregation-Induced Emission (AIE)-based Turn-on Fluorescence Sensor

  • 최해민 (대구대학교 대학원 화학과) ;
  • 성현정 (대구대학교 대학원 화학과) ;
  • 차주연 (대구대학교 과학생명융합대학 화학생명과학부) ;
  • 이성호 (대구대학교 대학원 화학과)
  • 투고 : 2023.08.09
  • 심사 : 2023.11.13
  • 발행 : 2023.11.30

초록

Lead, a heavy metal widely employed in various industries, continues to pose a threat to both human health and the environment. Therefore, the development of a sensor capable of rapidly and accurately detecting lead(II) ions in real-time at contaminated sites is crucial. In this study, we have engineered a fluorescent sensor with the ability to efficiently detect lead(II) ions under actual environmental conditions, including tap water and freshwater. The compound, tetraphenylethylene carboxylic acid derivative (TPE-COOH), exhibits high selectivity and sensitivity toward lead(II) ions in aqueous solution, where the interaction between TPE-COOH and lead(II) ions leads to its aggregation, thus triggering a fluorescence "turn-on" based on the aggregation-induced emission (AIE) mechanism. Impressively, compound TPE-COOH proficiently detects lead(II) ions within a range of 30 to 100 𝜇M in tap water and freshwater, even in the presence of various interfering substances.

키워드

과제정보

이 논문은 2023학년도 대구대학교 학문후속세대 연구과제로 수행되었음.

참고문헌

  1. Cai, X., Liu, B., 2020, Aggregation-induced emission: recent advances in materials and biomedical applications, Angew, Chem. Int. Ed., 59, 9868-9886. https://doi.org/10.1002/anie.202000845
  2. Carter, K. P., Young, A. M., Palmer, A. E., 2014, Fluorescent sensors for measuring metal ions in living systems, Chem. Rev., 114, 4564-4601. https://doi.org/10.1021/cr400546e
  3. Chen, S. Y., Li, Z., Li, K., Yu, X. Q., 2021, Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions, Coord. Chem. Rev., 429, 213691.
  4. Claudio, E. S., Godwin, H. A., Magyar, J. S., 2002, Fundamental coordination chemistry, environmental chemistry, and biochemistry of lead(II), in Karlin, K. D. (ed), Progress in Inorganic Chemistry, 51, Wiely, 1-144.
  5. Grant, L. D., 2020, Lead and compounds, in Lippmann, M., Leikauf, G. D., (eds.), Environmental Toxicants: Human Exposures and Their Health Effects, Fourth Edition, 17, Wiely, New York, 627-675.
  6. Hong, Y., Lam, J. W. Y., Tang, B. Z., 2009, Aggregation-induced emission: phenomenon, mechanism and applications, Chem. Commun., 29, 4332-4353. https://doi.org/10.1039/b904665h
  7. Kim, H. N., Ren, W. X., Kim, J. S., Yoon, J., 2012, Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions, Chem. Soc. Rev., 41, 3210-3244. https://doi.org/10.1039/C1CS15245A
  8. La, D. D., Bhosale, S. V., Jones, L. A., Bhosale, S. V., 2018, Tetraphenylethylene-based AIE-active probes for sensing applications, ACS Appl. Mater. Interfaces, 10, 12189-12216. https://doi.org/10.1021/acsami.7b12320
  9. Lanphear, B. P., Hornung, R., Khoury, J., Yolton, K., Baghurst, P., Bellinger, D. C., Canfield, R. L., Dietrich, K. N., Bornschein, R., Greene, T., Rothenberg, S. J., Needleman, H. L., Schnaas, L., Wasserman, G., Graziano, J., Roberts, R., 2005, Low-level environmental lead exposure and children's intellectual function: an international pooled analysis, Environ. Health Perspect., 113, 894-899. https://doi.org/10.1289/ehp.7688
  10. Lee, J., Lee, S. H., 2020a, Self-assembled micelle-based fluorescence sensor for extremely acidic pH range, J. Environ. Sci. Int., 29, 801-808. https://doi.org/10.5322/JESI.2020.29.8.801
  11. Lee, S. Y., Lee, S. H., 2020b, A Pyrenylboronic acid-based fluorescence sensor for highly efficient detection of mercury(II) ions, J. Environ. Sci. Int., 29, 201-207. https://doi.org/10.5322/JESI.2020.29.2.201
  12. Liu, L., Zhang, W., Zhong, M. Q., Jia, M. H., Jiang, F., Zhang, Y., Xiao, C. D., Xiao, X., Shen, X. C., 2022, Tetraphenylethene derivative that discriminates parallel G-quadruplexes, RSC Adv., 12, 14765-14775. https://doi.org/10.1039/D2RA01433E
  13. Mehta, P. K., Jeon, J., Ryu, K., Park, S. H., Lee, K. H., 2022, Ratiometric fluorescent detection of lead ions in aquatic environment and living cells using a fluorescent peptide-based probe, J. Hazard. Mater., 427, 128161.
  14. Shaily., Kumar, A., Parveen, I., Ahmed, N., 2018, Highly selective and sensitive coumarin-triazole-based fluorometric 'turn-off' sensor for detection of Pb2+ ions, Luminescence, 33, 713-721. https://doi.org/10.1002/bio.3468
  15. Townsend, A. T., Miller, K. A., McLean, S., Aldous, S., 1998, The determination of copper, zinc, cadmium and lead in urine by high resolution ICP-MS, J. Anal. At. Spectrom., 13, 1213-1219. https://doi.org/10.1039/a805021j
  16. World Health Organization, 2004, Guidelines for drinking-water quality, 1, 3rd ed., World Health Organization, Geneva, 188.
  17. Wu, D., Sedgwick, A. C., Gunnlaugsson, T., Akkaya, E. U., Yoon, J., James, T. D., 2017, Fluorescent chemosensors: the past, present and future, Chem. Soc. Rev., 46, 7105-7123. https://doi.org/10.1039/C7CS00240H