참고문헌
- AASHTO LRFD (2012), Bridge Specification, 6th Edition, AASHTO, Washington, DC.
- Ahamed, T., Duan, J.G. and Jo, H. (2020), "Flood-fragility analysis of instream bridges-consideration of flow hydraulics, geotechnical uncertainties, and variable scour depth", Struct. Infrastr. Eng., 17(11), 1494-1507. https://doi.org/10.1080/15732479.2020.1815226.
- Ahamed, T., Shim, J., Jo, H. and Duan, J.G. (2018), "Flood fragility analysis of instream bridges", Sensor. Smart Struct. Technol. Civil Mech. Aerosp. Syst., 10598, 542-547. https://doi.org/10.1117/12.2296782.
- Anisha, A., Jacob, A., Davis, R. and Mangalathu, S. (2022), "Fragility functions for highway RC bridge under various flood scenarios", Eng. Struct., 260, 114244. https://doi.org/10.1016/j.engstruct.2022.114244.
- Argyroudis, S.A. and Mitoulis, S.A. (2021), "Vulnerability of bridges to individual and multiple hazards- floods and earthquakes", Reliab. Eng. Syst. Saf., 210, 107564. https://doi.org/10.1016/j.ress.2021.107564.
- Arneson, L.A.M., Zevenbergen, L.W., Lagasse, P.F and Clopper, P.E. (2001), "Evaluating scour at bridges", Hydraulic Engineering Circular (HEC) No. 18, Publication No. FHWAHIF-12-003, Federal Highway Administration, Department of Transportation, Washington, DC, U.S.
- AS5100.7 (2017), Bridge Design-Part 2: Design l Loads, Standards Australia Limited, Sydney.
- Banerjee, S. and Shinozuka, M. (2008), "Experimental verification of bridge seismic damage states quantified by calibrating analytical models with empirical field data", Earthq. Eng. Eng. Vib., 7, 383-393. https://doi.org/10.1007/s11803-008-1010-9.
- Bonthron, L.A., Beck, C., Lund, A., Zhang, X., Cao, Y., Dyke, S.J., Ramirez, J., Mavroeidis, G.P., Baah, P. and Hunter, J. (2021), "Database enabled rapid seismic vulnerability assessment of bridges", Transp. Res. Record, 2675(12), 1106-1120. https://doi.org/10.1177/03611981211032
- CCKP (2021), The World Bank Group. https://climateknowledgeportal.worldbank.org/
- CCS (2022), Social Protection Research Centre. Climate Crisis, Hassanabad Bridge Collapse Hunza. https://www.sprc.org.pk/climate-crisis-hassanabad-bridgecollapse-hunza-pakistan-2022/
- Cook, W., Barr, P.J and Halling, M.W. (2015), "Bridge failure rate", J. Perform. Constr. Facil., 29, 1-8. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000571.
- CWC (2019), Water Year Book, 2017-18, Gandhinagar (Gujarat).
- Dey, A. and Sil, A. (2021), "Advanced corrosion-rate model for comprehensive seismic fragility assessment of chloride affected RC bridges located in the coastal region of India", Struct., 34, 947-963. https://doi.org/10.1016/j.istruc.2021.08.045.
- Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H. and Kanae, S. (2013), "Global flood risk under climate change", Nat. Climate Change 3(9), 816. https://doi.org/10.1038/nclimate1911.
- Hung, C.C. and Yau, W.G. (2017), "Vulnerability evaluation of scoured bridges under floods", Eng. Struct., 132, 288-299. https://doi.org/10.1016/j.engstruct.2016.11.044.
- Kerenyi, K., Sofu, T. and Guo, J. (2009), "Hydrodynamic forces on inundated bridge decks", Report No. FHWA-HRT-09-028, 48.
- Khandel, O and Soliman, M. (2019), "Integrated framework for quantifying the effect of climate change on the risk of bridge failure due to floods and flood-induced scour", J. Bridge Eng., 24, 04019090. https://doi.org/10.1061/(asce)be.1943-5592.0001473.
- Kim, H., Sim, S.H., Lee, J., Lee Y.J and Kim, J.M. (2017), "Flood fragility analysis for bridges with multiple failure modes", Adv. Mech. Eng., 9(3), 1687814017696415. https://doi.org/10.1177/1687814017696415.
- Kundzewicz, Z.W., Kanae, S., Seneviratne, S.I., Handmer, J., Nicholls, N., Peduzzi, P., ... & Sherstyukov, B. (2014), "Flood risk and climate change: Global and regional perspectives", Hydrolog. Sci. J., 59(1), 1-28. http://doi.org/10.1080/02626667.2013.857411
- Lebbe, M.F.K., Lokuge, W., Setunge, S. and Zhang, K. (2014), "Failure mechanism of bridge infrastructure in an extreme flood event", Proceedings of the First Conference of Infrastructure Failures and Consequences, Melbourne, July.
- Lee, J., Lee Y.J., Kim, H. and Sim, S.H. (2016a), "Flood fragility analysis for multiple failure modes of bridges by finite element reliability analysis", The 2016 Structures Congress, Korea, August.
- Lee, J., Lee, Y.J., Kim, H., Sim, S.H. and Kim, J.M. (2016b), "A new methodology development for flood fragility curve derivation considering structural deterioration for bridges", Smart Struct. Syst., 17, 149-165. https://doi.org/10.12989/sss.2016.17.1.149.
- Loli, M., Kefalas, G., Dafis, S., Mitoulis, S.A. and Schmidt, F. (2022a), "Bridge-specific flood risk assessment of transport networks using GIS and remotely sensed data", Sci. Total Environ., 850, 157976. https://doi.org/10.1016/j.scitotenv.2022.157976.
- Loli, M., Mitoulis, S.A., Tsatsis, A., Manousakis, J., Kourkoulis, R. and Zekkos, D. (2022b), "Flood characterization based on forensic analysis of bridge collapse using UAV reconnaissance and CFD simulations", Sci. Total Environ., 822, 153661. http://doi.org/10.1016/j.scitotenv.2022.153661
- Mitoulis, S.A., Argyroudis, S.A., Loli, M. and Imam, B. (2021), "Restoration models for quantifying flood resilience of bridges", Eng. Struct., 238, 112180. https://doi.org/10.1016/j.engstruct.2021.112180.
- Mondoro, A. and Frangopol, D.M. (2018), "Risk-based cost-benefit analysis for the retrofit of bridges exposed to extreme hydrologic events considering multiple failure modes", Eng. Struct., 159, 310-319. https://doi.org/10.1016/j.engstruct.2017.12.029.
- Nasim, M., Setunge, S., Zhou, S. and Mohseni, H. (2019), "An investigation of water-flow pressure distribution on bridge piers under flood loading", Struct. Infrastr. Eng., 15, 219-229. https://doi.org/10.1080/15732479.2018.1545792.
- Nasr, A., Kjellstrom, E., Bjornsson, I., Honfi, D., Ivanov, O.L. and Johansson, J. (2020), "Bridges in a changing climate: a study of the potential impacts of climate change on bridges and their possible adaptations", Struct. Infrastr. Eng., 16, 738-349. https://doi.org/10.1080/15732479.2019.1670215.
- Nowak, A. and Collins, K. (2000), Reliability of Structures, McGraw-Hill, Boston, USA.
- Pregnolato, M., Winter, A.O., Mascarenas, D., Sen, A.D., Bates, P. and Motley, M.R. (2022), "Assessing flooding impact to riverine bridges: An integrated analysis", Nat. Hazard. Earth Syst Sci., 22, 1559-1576. https://doi.org/10.5194/nhess-22-1559-2022.
- Ritchie, H. and Roser, M. (2014), Natural Disasters, Our World in Data.
- Shan, H., Xie, Z., Bojanowski, C., Suaznabar, O., Lottes, S., Shen, J. and Kerenyi, K. (2012), "Submerged flow bridge scour under clear water conditions", Federal Highway Administration No. FHWA-HRT-12-034.
- SP-16 (1980), Design Aids for Reinforced Concrete to IS 456:1978, New Delhi.
- Wardhana, K. and Hadipriono, F.C. (2003), "Analysis of recent bridge failures in the United States", J. Perform. Constr. Facil., 17, 144-150. https://doi.org/10.1061/(ASCE)0887-3828(2003)17:3(144).
- Xiong, W., Cai, C.S., Zhang, R., Shi, H. and Xu, C. (2023), "Review of hydraulic bridge failures: Historical statistic analysis, failure modes, and prediction methods", J. Bridge Eng., 28(4), 03123001. https://doi.org/10.1061/jbenf2.beeng5763.
- Yilmaz, T. and Banerjee, S. (2018), "Impact spectrum of flood hazard on seismic vulnerability of bridges", Struct. Eng. Mech., 66(4), 515-529. https://doi.org/10.12989/sem.2018.66.4.515.