DOI QR코드

DOI QR Code

Rest-activity circadian rhythm in hospitalized older adults with mild cognitive impairment in Korea and its relationship with salivary alpha amylase: an exploratory study

노인요양병원에 입원한 경도인지장애 노인의 휴식-활동 일주기 리듬에 관한 탐색적 연구: 타액 알파 아밀라제와의 관련성을 중심으로

  • Received : 2023.09.13
  • Accepted : 2023.11.16
  • Published : 2023.11.30

Abstract

Purpose: This study aimed to evaluate the rest-activity circadian rhythm (RAR) using data obtained from wearable actigraph devices in hospitalized older adults with mild cognitive impairment (MCI), and to investigate its relationship with salivary alpha amylase (sAA). Methods: This secondary data analysis used data from the Hospitalized Older Adults' Cognition and Physical Activity Study. Actigraph data for 3-4 days were analyzed for RAR. RAR indices such as interdaily stability (IS), intradaily variability (IV), activity level during the most active 10-hour period and during the most least active 5-hour period, and relative amplitude (RA) were calculated. Data on sAA collected in the morning and general characteristics, including body mass index (BMI), were analyzed. Results: Data from 92 hospitalized older adults with MCI were analyzed. The IS, IV, RA were 0.23, 0.73, 0.88, respectively. The average level of sAA was 77.02 U/mL, and a higher level of sAA was significantly associated with better IS and RA in the regression analysis, while age, BMI, and cognitive level were not. BMI showed positive correlations with IS and RA. Conclusion: RAR in the hospitalized older adults with MCI was attenuated, showing especially low IS, which implies they failed to maintain regular and repetitive 24-hour RAR. Increased sAA and BMI were associated with robust RAR. Nurses need to pay attention to maintain robust RAR in hospitalized older adults with MCI, and strategies should be developed to improve their RAR.

Keywords

References

  1. Pappas JA, Miner B. Sleep deficiency in the elderly. Clinics in Chest Medicine. 2022;43(2):273-286. http://doi.org/10.1016/j.ccm.2022.02.005 
  2. Hayes TL, Riley T, Mattek N, Pavel M, Kaye JA. Sleep habits in mild cognitive impairment. Alzheimer Disease & Associated Disorders. 2014;28(2):145-150. https://doi.org/10.1097/WAD.0000000000000010 
  3. Hou YC, Liu LM, Chen XT, Li Q, Li J. Association between circadian disruption and diseases: a narrative review. Life Sciences. 2020;262:118512. http://doi.org/10.1016/j.lfs.2020.118512 
  4. Czeisler CA, Gooley J. Sleep and circadian rhythms in humans. Cold Spring Harbor Symposia on Quantitative Biology. 2007;72:579-597. http://doi.org/10.1101/sqb.2007.72.064 
  5. Song Y, Dowling GA, Wallhagen MI, Lee KA, Strawbridge WJ, Hubbard EM. Rest-activity patterns in institutionalized Korean older adults with dementia: a pilot study. Journal of Gerontological Nursing. 2009;35(12):20-28. https://doi.org/10.3928/00989134-20091109-99 
  6. Targa ADS, Benitez ID, Dakterzada F, Fontenele-Araujo J, Minguez O, Zetterberg H, et al. The circadian rest-activity pattern predicts cognitive decline among mild-moderate Alzheimer's disease patients. Alzheimer's Research & Therapy. 2021;13:161. https://doi.org/10.1186/s13195-021-00903-7 
  7. Rogers TS, Blackwell TL, Lane NE, Tranah G, Orwoll ES, Cauley JA, et al. Rest-activity patterns and falls and fractures in older men. Osteoporosis International. 2017;28(4):1313-1322. https://doi.org/10.1007/s00198-016-3874-2 
  8. Proctor GB, Carpenter GH. Regulation of salivary gland function by autonomic nerves. Autonomic Neuroscience: Basic & Clinical. 2007;133(1):3-18. https://doi.org/10.1016/j.autneu.2006.10.006 
  9. Nater UM, Rohleder N. Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: current state of research. Psychoneuroendocrinology. 2009;34(4):486-496. https://doi.org/10.1016/j.psyneuen.2009.01.014 
  10. Yamane N, Ikeda A, Tomooka K, Saito I, Maruyama K, Eguchi E, et al. Salivary alpha-amylase activity and mild cognitive impairment among Japanese older adults: The Toon Health Study. The Journal of Prevention of Alzheimer's Disease. 2022;9:752-757. https://doi.org/10.14283/jpad.2022.51 
  11. Somers VK, Dyken ME, Mark AL, Abboud FM. Sympathetic-nerve activity during sleep in normal subjects. New England Journal of Medicine. 1993;328(5):303-307. https://doi.org/10.1056/nejm199302043280502 
  12. Suh M. The association of salivary alpha-amylase, heart rate variability, and psychological stress on objectively measured sleep behaviors among college students. Frontiers of Nursing. 2022;9(1):63-70. https://doi.org/10.2478/fon-2022-0008 
  13. Koch CE, Leinweber B, Drengberg BC, Blaum C, Oster H. Interaction between circadian rhythms and stress. Neurobiology of Stress. 2017;6:57-67. https://doi.org/10.1016/j.ynstr.2016.09.001 
  14. Roveda E, Bruno E, Galasso L, Mule A, Castelli L, Villarini A, et al. Rest-activity circadian rhythm in breast cancer survivors at 5 years after the primary diagnosis. Chronobiology International. 2019;36(8):1156-1165. https://doi.org/10.1080/07420528.2019.1621330 
  15. Tevy MF, Giebultowicz J, Pincus Z, Mazzoccoli G, Vinciguerra M. Aging signaling pathways and circadian clock-dependent metabolic derangements. Trends in Endocrinology & Metabolism. 2013;24(5):229-237. https://doi.org/10.1016/j.tem.2012.12.002 
  16. Montaruli A, Castelli L, Mule A, Scurati R, Esposito F, Galasso L, et al. Biological rhythm and chronotype: new perspectives in health. Biomolecules. 2021;11(4):487. https://doi.org/10.3390/biom11040487 
  17. LaVoy EC, Palmer CA, So C, Alfano CA. Bidirectional relationships between sleep and biomarkers of stress and immunity in youth. International Journal of Psychophysiology. 2020;158:331-339. https://doi.org/10.1016/j.ijpsycho.2020.10.010 
  18. Greenlund IM, Carter JR. Sympathetic neural responses to sleep disorders and insufficiencies. American Journal of Physiology-Heart and Circulatory Physiology. 2022;322 (3):337-349. https://doi.org/10.1152/ajpheart.00590.2021 
  19. Winstone JH, Sarna S. Enhanced sympathetic nerve activity induced by neonatal colon inflammationinduces gastric hypersensitivity and anxiety-like behavior in adult rats. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2016;311(1):G32-G39. https://doi.org/10.1152/ajpgi.00067.2016 
  20. Han JW, Kim TH, Jhoo JH, Park JH, Kim JL, Ryu SH, et al. A normative study of the Mini-Mental State Examination for Dementia Screening (MMSE-DS) and its short form(SMMSE-DS) in the Korean elderly. Journal of Korean Geriatric Psychiatry. 2010;14(1):27-37. 
  21. Jessen F, Wolfsgruber S, Wiese B, Bickel H, Mosch E, Kaduszkiewicz H, et al. AD dementia risk in late MCI, in early MCI, and in subjective memory impairment. Alzheimer's & Dementia. 2014;10(1):76-83. https://doi.org/10.1016/j.jalz.2012.09.017 
  22. Suh M. Influences of autonomic function, salivary cortisol and physical activity on cognitive functions in institutionalized older adults with mild cognitive impairment: based on neurovisceral integration model. Journal of Korean Academy of Nursing. 2021;51(3):294-304. https://doi.org/10.4040/jkan.20282 
  23. Neikrug AB, Chen IY, Palmer JR, McCurry SM, Von Korff M, Perlis M, et al. Characterizing behavioral activity rhythms in older adults using actigraphy. Sensors. 2020;20(2):549. https://doi.org/10.3390/s20020549 
  24. Cespedes Feliciano EM, Quante M, Weng J, Mitchell JA, James P, Marinac CR, et al. Actigraphy-derived daily rest-activity patterns and body mass index in community-dwelling adults. Sleep. 2017;40(12):zsx168. https://doi.org/10.1093/sleep/zsx168 
  25. Van Someren EJ, Swaab DF, Colenda CC, Cohen W, McCall WV, Rosenquist PB. Bright light therapy: improved sensitivity to its effects on rest-activity rhythms in Alzheimer patients by application of nonparametric methods. Chronobiology International. 1999;16(4):505-518. https://doi.org/10.3109/07420529908998724 
  26. Nater UM, Rohleder N, Schlotz W, Ehlert U, Kirschbaum C. Determinants of the diurnal course of salivary alpha-amylase. Psychoneuroendocrinology. 2007;32(4):392-401. https://doi.org/10.1016/j.psyneuen.2007.02.007 
  27. Sun X, Yu W, Wang M, Hu J, Li Y. Association between rest-activity rhythm and cognitive function in the elderly: The U.S. National Health and Nutrition Examination Survey, 2011-2014. Frontiers in Endocrinology. 2023;14:1135085. https://doi.org/10.3389/fendo.2023.1135085 
  28. Palmer JR, Wang C, Kong D, Cespedes M, Pye J, Hickie IB, et al. Rest-activity rhythms and tract specific white matter lesions in older adults at risk for cognitive decline. Molecular Psychiatry. 2022;27:3410-3416. https://doi.org/10.1038/s41380-022-01641-4 
  29. Jaiswal SJ, Bagsic SRS, Takata E, Kamdar BB, Ancoli-Israel S, Owens RL. Actigraphy-based sleep and activity measurements in intensive care unit patients randomized to ramelteon or placebo for delirium prevention. Scientific Reports. 2023;13(1):1450. https://doi.org/10.1038/s41598-023-28095-0 
  30. Zeron-Rugerio MF, Diez-Noguera A, Izquierdo-Pulido M, Cambras T. Higher eating frequency is associated with lower adiposity and robust circadian rhythms: a cross-sectional study. The American Journal of Clinical Nutrition. 2021;113(1):17-27. https://doi.org/10.1093/ajcn/nqaa282 
  31. Musiek ES, Bhimasani M, Zangrilli MA, Morris JC, Holtzman DM, Ju YS. Circadian rest-activity pattern changes in aging and preclinical Alzheimer disease. JAMA Neurology. 2018;75(5):582-590. https://doi.org/10.1001/jamaneurol.2017.4719 
  32. Meyer N, Harvey AG, Lockley SW, Dijk DJ. Circadian rhythms and disorders of the timing of sleep. The Lancet. 2022;400(10357):1061-1078. https://doi.org/10.1016/s0140-6736(22)00877-7 
  33. Gao L, Lim ASP, Wong PM, Gaba A, Cui L, Yu L, et al. Fragmentation of rest/activity patterns in community-based elderly individuals predicts incident heart failure. Nature and Science of Sleep. 2020;12:299-307. https://doi.org/10.2147/nss.s253757 
  34. Xu Y, Su S, Li X, Mansuri A, McCall WV, Wang X. Blunted rest-activity circadian rhythm increases the risk of all-cause, cardiovascular disease and cancer mortality in US adults. Scientific Reports. 2022;12(1):20665. https://doi.org/10.1038/s41598-022-24894-z 
  35. Boudreau P, Yeh WH, Dumont GA, Boivin DB. Circadian variation of heart rate variability across sleep stages. Sleep. 2013;36(12):1919-1928. https://doi.org/10.5665/sleep.3230 
  36. Strahler J, Mueller A, Rosenloecher F, Kirschbaum C, Rohleder N. Salivary alpha-amylase stress reactivity across different age groups. Psychophysiology. 2010;47(3):587-595. https://doi.org/10.1111/j.1469-8986.2009.00957.x 
  37. Klaus K, Doerr JM, Strahler J, Skoluda N, Linnemann A, Nater UM. Poor night's sleep predicts following day's salivary alpha-amylase under high but not low stress. Psychoneuroendocrinology. 2019;101:80-86. https://doi.org/10.1016/j.psyneuen.2018.10.030 
  38. Pundir M, Papagerakis S, De Rosa MC, Chronis N, Kurabayashi K, Abdulmawjood S, et al. Emerging biotechnologies for evaluating disruption of stress, sleep, and circadian rhythm mechanism using aptamer-based detection of salivary biomarkers. Biotechnology Advances. 2022;59:107961. https://doi.org/10.1016/j.biotechadv.2022.107961 
  39. Shibasaki K, Ogawa S, Yamada S, Iijima K, Eto M, Kozaki K, et al. Association of decreased sympathetic nervous activity withmortality of older adults in long-term care. Geriatrics & Gerontology International. 2014;14:159-166. https://doi.org/10.1111/ggi.12074 
  40. Fuji S, Tanioka T, Yasuhara Y, Sato M, Saito K, Purnell MJ, et al. Characteristic autonomic nervous activity of institutionalized elders with dementia. Open Journal of Psychiatry. 2016;6(1):34-49. http://doi.org/10.4236/ojpsych.2016.61004 
  41. Sohail S, Yu L, Bennett DA, Buchman AS, Lim AS. Irregular 24-hour activity rhythms and the metabolic syndrome in older adults. Chronobiology International. 2015;32(6):802-813. https://doi.org/10.3109/07420528.2015.1041597 
  42. Xiao Q, Shadyab AH, Rapp SR, Stone KL, Yaffe K, Sampson JN, et al. Rest-activity rhythms and cognitive impairment and dementia in older women: results from the Women's Health Initiative. Journal of the American Geriatrics Society. 2022; 70(10):2925-2937. https://doi.org/10.1111/jgs.17926 
  43. Lee PMY, Liao G, Tsang CYJ, Leung CC, Kwan MP, Tse LA. Sex differences in the associations of sleep-wake characteristics and rest-activity circadian rhythm with specific obesity types among Hong Kong community-dwelling older adults. Archives of Gerontology and Geriatrics. 2023;113:105042. https://doi.org/10.1016/j.archger.2023.105042 
  44. Kume Y, Kodama A, Maekawa H. Preliminary report; comparison of the circadian rest-activity rhythm of elderly Japanese community-dwellers according to sarcopenia status. Chronobiology International. 2020;37(7):1099-1105. https://doi.org/10.1080/07420528.2020.1740725 
  45. Morita K, Kimura H, Tsuka H, Nishio F, Yoshida M, Tsuga K. Association between salivary alpha-amylase and subjective and objective oral parafunctions in community-dwelling elderly individuals. Journal of Dental Sciences. 2020;15(3):310-314. https://doi.org/10.1016/j.jds.2020.05.004