Acknowledgement
연구는 한국연구재단 해양-육상-대기 탄소순환시스템 연구사업 "동아시아 지역 탄소 순환 불확실성 진단 연구(2021M3I6A1086807)"와 환경부의 재원으로 한국환경산업기술원의 "관측기반 온실가스 공간정보 지도 구축 기술개발사업(RS-2023-00232066)"의 지원으로 수행되었습니다.
References
- Acosta Navarro, J. C., and Coauthors, 2016: Amplification of Arctic warming by past air pollution reductions in Europe. Nature Geosci., 9, 277-281, doi:10.1038/NGEO2673.
- Allen, R. J., and Coauthors, 2020: Climate and air quality impacts due to mitigation of non-methane near-term climate forcers. Atmos. Chem. Phys., 20, 9641-9663, doi:10.5194/acp-20-9641-2020.
- Allen, R. J., and Coauthors, 2021: Significant climate benefits from near-term climate forcer mitigation in spite of aerosol reductions. Environ. Res. Lett., 16, 034010, doi:10.1088/1748-9326/abe06b.
- Bossolasco, A., F. Jegou, P. Sellitto, G. Berthet, C. Kloss, and B. Legras, 2021: Global modeling studies of composition and decadal trends of the Asian Tropopause Aerosol Layer. Atmos. Chem. Phys., 21, 2745-2764, doi:10.5194/acp-21-2745-2021.
- Brauer, M., and Coauthors, 2012: Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ. Sci. Technol., 46, 652-660, doi:10.1021/es2025752.
- Collins, W. J., M. M. Fry, H. Yu, J. S. Fuglestvedt, D. T. Shindell, and J. J. West, 2013: Global and regional temperature-change potentials for near-term climate forcers. Atmos. Chem. Phys., 13, 2471-2485, doi:10.5194/acp-13-2471-2013.
- Collins, W. J., M. M. Fry, H. Yu, J. S. Fuglestvedt, D. T. Shindell, and J. J. West, and Coauthors, 2017: AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6. Geosci. Model Development, 10, 585-607, doi:10.5194/gmd-10-585-2017.
- Cong, Z., S. Kang, S. Gao, Y. Zhang, Q. Li, and K. Kawamura, 2013: Historical trends of atmospheric black carbon on Tibetan Plateau as reconstructed from a 150-year lake sediment record. Environ. Sci. Technol., 47, 2579-2586, doi:10.1021/es3048202.
- Diffenbaugh, N. S., and Coauthors, 2017: Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl. Acad. Sci., 114, 4881-4886, doi:10.1073/pnas.1618082114.
- Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, 2000: Climate extremes: observations, modeling, and impacts. Science, 289, 2068-2074, doi:10.1126/science.289.5487.2068.
- Fu, B., and Coauthors, 2020: Short-lived climate forcers have long-term climate impacts via the carbon-climate feedback. Nature Climate Change, 10, 851-855, doi:10.1038/s41558-020-0841-x.
- Griffiths, P. T., and Coauthors, 2021: Tropospheric ozone in CMIP6 simulations. Atmos. Chem. Phys., 21, 4187-4218, doi:10.5194/acp-21-4187-2021.
- Haque, M. S., and R. B. Singh, 2017: Air pollution and human health in Kolkata, India: A case study. Climate, 5, 77, doi:10.3390/cli5040077.
- Hassan, T., and Coauthors, 2022: Air quality improvements are projected to weaken the Atlantic meridional overturning circulation through radiative forcing effects. Commun. Earth Environ., 3, 149, doi:10.1038/s43247-022-00476-9.
- IPCC, 2018: Global warming of 1.5℃. Masson-Delmotte V. et al. (ed). World Meteorological Organization, 32 pp.
- IPCC, 2021: Climate Change 2021. Masson-Delmotte, V. et al. (ed). World Meteorological Organization, 2391 pp.
- KEI, 2011: Economic analysis of climate change in Korea. Korea Environment Institute, 165 pp (in Korean).
- Klein Tank, A. M. G., F. W. Zwiers, and X. Zhang, 2009: Guidelines on Analysis of extremes in a changing climate in support of informed decisions for adaptation (Climate Data and Monitoring WCDMP-No. 72). WMO/TD-No1500, [Available online at https://library.wmo.int/doc_num.php?explnum_id=9419].
- Kloster, S., F. Dentener, J. Feichter, F. Raes, U. Lohmann, E. Roeckner, and I. Fischer-Bruns, 2010: A GCM study of future climate response to aerosol pollution reductions. Climate Dyn., 34, 1177-1194, doi:10.1007/s00382-009-0573-0.
- Kong, R., Z. Zhang, R. Huang, J. Tian, R. Feng, and X. Chen, 2022: Projected global warming-induced terrestrial ecosystem carbon across China under SSP scenarios. Ecological Indicators, 139, 108963, doi:10.1016/j.ecolind.2022.108963.
- Li, B., and Coauthors, 2016: The contribution of China's emissions to global climate forcing. Nature, 531, 357-361, doi:10.1038/nature17165.
- Li, L., and Coauthors, 2022: Mitigation of China's carbon neutrality to global warming. Nature Commun., 13, 5315, doi:10.1038/s41467-022-33047-9.
- Li, S., and Coauthors, 2023: Rapid increase in tropospheric ozone over Southeast Asia attributed to changes in precursor emission source regions and sectors. Atmos. Environ., 304, 119776, doi:10.1016/j.atmosenv.2023.119776.
- Li, Y., Z. Wang, Y. Lei, H. Che, and X. Zhang, 2023: Impacts of reductions in non-methane short-lived climate forcers on future climate extremes and the resulting population exposure risks in eastern and southern Asia. Atmos. Chem. Phys., 23, 2499-2523, doi:10.5194/acp-23-2499-2023.
- Liu, Z., Z. Deng, G. He, H. Wang, X. Zhang, J. Lin, Y. Qi, and X. Liang, 2022: Challenges and opportunities for carbon neutrality in China. Nature Rev. Earth Environ., 3, 141-155, doi:10.1038/s43017-021-00244-x.
- Luo, N., Y. Guo, J. Chou, and Z. Gao, 2022: Added value of CMIP6 models over CMIP5 models in simulating the climatological precipitation extremes in China. Int. J. Climatol., 42, 1148-1164, doi:10.1002/joc.7294.
- ME, 2019: Ministry of Environment comprehensive plan for managing particulate matter (2020~2024). Ministry of Environment Report, 92 pp (In Korean).
- ME, 2020: 2030 National Greenhouse Gas Reduction Target (NDC). Ministry of Environment Report, 13 pp (In Korean).
- Polson, D., M. Bollasina, G. C. Hegerl, and L. J. Wilcox, 2014: Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols. Geophys. Res. Lett., 41, 6023-6029, doi:10.1002/2014GL060811.
- Shepherd, T. G., 2016: A common framework for approaches to extreme event attribution. Current Climate Change Reports, 2, 28-38, doi:10.1007/s40641-016-0033-y.
- Shim, S. B., S. B. Seo, S.-H. Kwon, J. H. Lee, H. M. Sung, K.-O. Boo, J. C. Ha, J. Y. Byon, and Y.-H. Kim, 2020: Impact of Future Air Quality in East Asia under SSP Scenarios. Atmosphere, 30, 439-454, doi:10.14191/Atmos.2020.30.4.439 (In Korean with English abstract).
- Shim, S. B., J. Kim, H. M. Sung, J.-H. Lee, and Y.-H. Kim, 2021: Future Changes in Extreme Temperature and Precipitation over East Asia under SSP Scenarios. J. Climate Change Rese. 2021, 12, 143-162, doi:10.15531/KSCCR.2021.12.2.143 (In Korean with English abstract).
- Shindell, D. T., and Coauthors, 2013: Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys., 13, 2939-2974, doi:10.5194/acp-13-2939-2013.
- Sillmann, J., and E. Roeckner, 2008: Indices for extreme events in projections of anthropogenic climate change. Climatic Change, 86, 83-104, doi:10.1007/s10584-007-9308-6.
- Stott, P. A., D. A. Stone, and M. R. Allen, 2004: Human contribution to the European heatwave of 2003. Nature, 432, 610-614, doi:10.1038/nature03089.
- Stott, P. A., D. A. Stone, and M. R. Allen, and Coauthors, 2016: Attribution of extreme weather and climate-related events. Wiley Interdisciplinary Rev. Climate Change, 7, 23-41, doi:10.1002/wcc.380.
- Tang, R., J. Zhao, Y. Liu, X. Huang, Y. Zhang, D. Zhou, A. Ding, C. P. Nielsen, and H. Wang, 2022: Air quality and health co-benefits of China's carbon dioxide emissions peaking before 2030. Nature Commun., 13, 1008, doi:10.1038/s41467-022-28672-3.
- Tebaldi, C., and Coauthors, 2021: Climate model projections from the scenario model intercomparison project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. Discussions, 12, 253-293, doi:10.5194/esd-12-253-2021.
- Trenberth, K. E., 2012: Framing the way to relate climate extremes to climate change. Climatic Change, 115, 283-290, doi:10.1007/s10584-012-0441-5.
- Trenberth, K. E., J. T. Fasullo, and T. G. Shepherd, 2015: Attribution of climate extreme events. Nature Climate Change, 5, 725-730, doi:10.1038/NCLIMATE2657.
- Wang, P., and Coauthors, 2022: North China Plain as a hot spot of ozone pollution exacerbated by extreme high temperatures. Atmos. Chem. Phys., 22, 4705-4719, doi:10.5194/acp-22-4705-2022.
- Wang, X., D. Jiang, and X. Lang, 2017: Future extreme climate changes linked to global warming intensity. Sci. Bull., 62, 1673-1680, doi:10.1016/j.scib.2017.11.004.
- Wang, Y., T. Le, G. Chen, Y. L. Yung, H. Su, J. H. Seinfeld, and J. H. Jiang, 2020: Reduced European aerosol emissions suppress winter extremes over northern Eurasia. Nature Climate Change, 10, 225-230, doi:10.1038/s41558-020-0693-4.
- WHO, 2016: Burden of disease from the joint effects of household and ambient Air pollution for 2016. Accessed August 2, 2020, [Available online at https://www.ccacoalition.org/resources/burden-disease-joint-effects-household-and-ambient-air-pollution-2016].
- Xia, X., P. Wang, Y. Wang, Z. Li, J. Xin, J. Liu, and H. Chen, 2008: Aerosol optical depth over the Tibetan Plateau and its relation to aerosols over the Taklimakan Desert. Geophys. Res. Lett., 35, doi:10.1029/2008GL034981.
- Xie, B., H. Zhang, X. Yu, and Z. Wang, 2023: Fast and slow responses of surface air temperature in China to short-lived climate forcers. Sci. Total Environ., 882, 162888, doi: 10.1016/j.scitotenv.2023.162888.
- Yu, Z., and X. Li, 2015: Recent trends in daily temperature extremes over northeastern China (1960~2011). Quat. Int., 380, 35-48, doi:10.1016/j.quaint.2014.09.010.
- Zhu, X., S.-Y. Lee, X. Wen, Z. Ji, L. Lin, Z. Wei, Z. Zheng, D. Xu, and W. Dong, 2021: Extreme climate changes over three major river basins in China as seen in CMIP5 and CMIP6. Climate Dyn., 57, 1187-1205, doi:10.1007/s00382-021-05767-z.