DOI QR코드

DOI QR Code

Impacts of Carbon Neutrality and Air Quality Control on Near-term Climate Change in East Asia

탄소중립과 대기질 개선 정책이 동아시아 근 미래 기후변화에 미치는 영향

  • Youn-Ah Kim (School of Earth and Environmental Sciences, Seoul National University) ;
  • Jung Choi (School of Earth and Environmental Sciences, Seoul National University) ;
  • Seok-Woo Son (School of Earth and Environmental Sciences, Seoul National University)
  • 김윤아 (서울대학교 지구환경과학부) ;
  • 최정 (서울대학교 지구환경과학부) ;
  • 손석우 (서울대학교 지구환경과학부)
  • Received : 2023.08.24
  • Accepted : 2023.10.30
  • Published : 2023.11.30

Abstract

This study investigates the impacts of carbon neutrality and air quality control policies on near-term climate change in East Asia, by examining three Shared Socioeconomic Pathways (SSPs) scenarios from five climate models. Specifically, low carbon and strong air quality control scenario (SSP1-1.9), high carbon and weak air quality control scenario (SSP3-7.0), and high carbon and strong air quality control scenario (SSP3-7.0-lowNTCF) are compared. For these scenarios, the near-term climate (2045-2054 average) changes are evaluated for surface air temperature (SAT), hot temperature extreme intensity (TXx), and hot temperature extreme frequency (TX90p). In all three scenarios, SAT, TXx, and TX90p are projected to increase in East Asia, while carbon neutrality reduces the increasing rate of SAT and hot temperature extremes. Air quality control strengthens the warming rate. These opposed mitigation effects are robustly forced in all model simulations. Nonetheless, the impact of carbon neutrality overcomes the impact of air quality control. These results suggest that fast carbon neutrality, more effective than an air quality control policy, is necessary to slowdown future warming trend in East Asia.

Keywords

Acknowledgement

연구는 한국연구재단 해양-육상-대기 탄소순환시스템 연구사업 "동아시아 지역 탄소 순환 불확실성 진단 연구(2021M3I6A1086807)"와 환경부의 재원으로 한국환경산업기술원의 "관측기반 온실가스 공간정보 지도 구축 기술개발사업(RS-2023-00232066)"의 지원으로 수행되었습니다.

References

  1. Acosta Navarro, J. C., and Coauthors, 2016: Amplification of Arctic warming by past air pollution reductions in Europe. Nature Geosci., 9, 277-281, doi:10.1038/NGEO2673.
  2. Allen, R. J., and Coauthors, 2020: Climate and air quality impacts due to mitigation of non-methane near-term climate forcers. Atmos. Chem. Phys., 20, 9641-9663, doi:10.5194/acp-20-9641-2020.
  3. Allen, R. J., and Coauthors, 2021: Significant climate benefits from near-term climate forcer mitigation in spite of aerosol reductions. Environ. Res. Lett., 16, 034010, doi:10.1088/1748-9326/abe06b.
  4. Bossolasco, A., F. Jegou, P. Sellitto, G. Berthet, C. Kloss, and B. Legras, 2021: Global modeling studies of composition and decadal trends of the Asian Tropopause Aerosol Layer. Atmos. Chem. Phys., 21, 2745-2764, doi:10.5194/acp-21-2745-2021.
  5. Brauer, M., and Coauthors, 2012: Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ. Sci. Technol., 46, 652-660, doi:10.1021/es2025752.
  6. Collins, W. J., M. M. Fry, H. Yu, J. S. Fuglestvedt, D. T. Shindell, and J. J. West, 2013: Global and regional temperature-change potentials for near-term climate forcers. Atmos. Chem. Phys., 13, 2471-2485, doi:10.5194/acp-13-2471-2013.
  7. Collins, W. J., M. M. Fry, H. Yu, J. S. Fuglestvedt, D. T. Shindell, and J. J. West, and Coauthors, 2017: AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6. Geosci. Model Development, 10, 585-607, doi:10.5194/gmd-10-585-2017.
  8. Cong, Z., S. Kang, S. Gao, Y. Zhang, Q. Li, and K. Kawamura, 2013: Historical trends of atmospheric black carbon on Tibetan Plateau as reconstructed from a 150-year lake sediment record. Environ. Sci. Technol., 47, 2579-2586, doi:10.1021/es3048202.
  9. Diffenbaugh, N. S., and Coauthors, 2017: Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl. Acad. Sci., 114, 4881-4886, doi:10.1073/pnas.1618082114.
  10. Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, 2000: Climate extremes: observations, modeling, and impacts. Science, 289, 2068-2074, doi:10.1126/science.289.5487.2068.
  11. Fu, B., and Coauthors, 2020: Short-lived climate forcers have long-term climate impacts via the carbon-climate feedback. Nature Climate Change, 10, 851-855, doi:10.1038/s41558-020-0841-x.
  12. Griffiths, P. T., and Coauthors, 2021: Tropospheric ozone in CMIP6 simulations. Atmos. Chem. Phys., 21, 4187-4218, doi:10.5194/acp-21-4187-2021.
  13. Haque, M. S., and R. B. Singh, 2017: Air pollution and human health in Kolkata, India: A case study. Climate, 5, 77, doi:10.3390/cli5040077.
  14. Hassan, T., and Coauthors, 2022: Air quality improvements are projected to weaken the Atlantic meridional overturning circulation through radiative forcing effects. Commun. Earth Environ., 3, 149, doi:10.1038/s43247-022-00476-9.
  15. IPCC, 2018: Global warming of 1.5℃. Masson-Delmotte V. et al. (ed). World Meteorological Organization, 32 pp.
  16. IPCC, 2021: Climate Change 2021. Masson-Delmotte, V. et al. (ed). World Meteorological Organization, 2391 pp.
  17. KEI, 2011: Economic analysis of climate change in Korea. Korea Environment Institute, 165 pp (in Korean).
  18. Klein Tank, A. M. G., F. W. Zwiers, and X. Zhang, 2009: Guidelines on Analysis of extremes in a changing climate in support of informed decisions for adaptation (Climate Data and Monitoring WCDMP-No. 72). WMO/TD-No1500, [Available online at https://library.wmo.int/doc_num.php?explnum_id=9419].
  19. Kloster, S., F. Dentener, J. Feichter, F. Raes, U. Lohmann, E. Roeckner, and I. Fischer-Bruns, 2010: A GCM study of future climate response to aerosol pollution reductions. Climate Dyn., 34, 1177-1194, doi:10.1007/s00382-009-0573-0.
  20. Kong, R., Z. Zhang, R. Huang, J. Tian, R. Feng, and X. Chen, 2022: Projected global warming-induced terrestrial ecosystem carbon across China under SSP scenarios. Ecological Indicators, 139, 108963, doi:10.1016/j.ecolind.2022.108963.
  21. Li, B., and Coauthors, 2016: The contribution of China's emissions to global climate forcing. Nature, 531, 357-361, doi:10.1038/nature17165.
  22. Li, L., and Coauthors, 2022: Mitigation of China's carbon neutrality to global warming. Nature Commun., 13, 5315, doi:10.1038/s41467-022-33047-9.
  23. Li, S., and Coauthors, 2023: Rapid increase in tropospheric ozone over Southeast Asia attributed to changes in precursor emission source regions and sectors. Atmos. Environ., 304, 119776, doi:10.1016/j.atmosenv.2023.119776.
  24. Li, Y., Z. Wang, Y. Lei, H. Che, and X. Zhang, 2023: Impacts of reductions in non-methane short-lived climate forcers on future climate extremes and the resulting population exposure risks in eastern and southern Asia. Atmos. Chem. Phys., 23, 2499-2523, doi:10.5194/acp-23-2499-2023.
  25. Liu, Z., Z. Deng, G. He, H. Wang, X. Zhang, J. Lin, Y. Qi, and X. Liang, 2022: Challenges and opportunities for carbon neutrality in China. Nature Rev. Earth Environ., 3, 141-155, doi:10.1038/s43017-021-00244-x.
  26. Luo, N., Y. Guo, J. Chou, and Z. Gao, 2022: Added value of CMIP6 models over CMIP5 models in simulating the climatological precipitation extremes in China. Int. J. Climatol., 42, 1148-1164, doi:10.1002/joc.7294.
  27. ME, 2019: Ministry of Environment comprehensive plan for managing particulate matter (2020~2024). Ministry of Environment Report, 92 pp (In Korean).
  28. ME, 2020: 2030 National Greenhouse Gas Reduction Target (NDC). Ministry of Environment Report, 13 pp (In Korean).
  29. Polson, D., M. Bollasina, G. C. Hegerl, and L. J. Wilcox, 2014: Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols. Geophys. Res. Lett., 41, 6023-6029, doi:10.1002/2014GL060811.
  30. Shepherd, T. G., 2016: A common framework for approaches to extreme event attribution. Current Climate Change Reports, 2, 28-38, doi:10.1007/s40641-016-0033-y.
  31. Shim, S. B., S. B. Seo, S.-H. Kwon, J. H. Lee, H. M. Sung, K.-O. Boo, J. C. Ha, J. Y. Byon, and Y.-H. Kim, 2020: Impact of Future Air Quality in East Asia under SSP Scenarios. Atmosphere, 30, 439-454, doi:10.14191/Atmos.2020.30.4.439 (In Korean with English abstract).
  32. Shim, S. B., J. Kim, H. M. Sung, J.-H. Lee, and Y.-H. Kim, 2021: Future Changes in Extreme Temperature and Precipitation over East Asia under SSP Scenarios. J. Climate Change Rese. 2021, 12, 143-162, doi:10.15531/KSCCR.2021.12.2.143 (In Korean with English abstract).
  33. Shindell, D. T., and Coauthors, 2013: Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys., 13, 2939-2974, doi:10.5194/acp-13-2939-2013.
  34. Sillmann, J., and E. Roeckner, 2008: Indices for extreme events in projections of anthropogenic climate change. Climatic Change, 86, 83-104, doi:10.1007/s10584-007-9308-6.
  35. Stott, P. A., D. A. Stone, and M. R. Allen, 2004: Human contribution to the European heatwave of 2003. Nature, 432, 610-614, doi:10.1038/nature03089.
  36. Stott, P. A., D. A. Stone, and M. R. Allen, and Coauthors, 2016: Attribution of extreme weather and climate-related events. Wiley Interdisciplinary Rev. Climate Change, 7, 23-41, doi:10.1002/wcc.380.
  37. Tang, R., J. Zhao, Y. Liu, X. Huang, Y. Zhang, D. Zhou, A. Ding, C. P. Nielsen, and H. Wang, 2022: Air quality and health co-benefits of China's carbon dioxide emissions peaking before 2030. Nature Commun., 13, 1008, doi:10.1038/s41467-022-28672-3.
  38. Tebaldi, C., and Coauthors, 2021: Climate model projections from the scenario model intercomparison project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. Discussions, 12, 253-293, doi:10.5194/esd-12-253-2021.
  39. Trenberth, K. E., 2012: Framing the way to relate climate extremes to climate change. Climatic Change, 115, 283-290, doi:10.1007/s10584-012-0441-5.
  40. Trenberth, K. E., J. T. Fasullo, and T. G. Shepherd, 2015: Attribution of climate extreme events. Nature Climate Change, 5, 725-730, doi:10.1038/NCLIMATE2657.
  41. Wang, P., and Coauthors, 2022: North China Plain as a hot spot of ozone pollution exacerbated by extreme high temperatures. Atmos. Chem. Phys., 22, 4705-4719, doi:10.5194/acp-22-4705-2022.
  42. Wang, X., D. Jiang, and X. Lang, 2017: Future extreme climate changes linked to global warming intensity. Sci. Bull., 62, 1673-1680, doi:10.1016/j.scib.2017.11.004.
  43. Wang, Y., T. Le, G. Chen, Y. L. Yung, H. Su, J. H. Seinfeld, and J. H. Jiang, 2020: Reduced European aerosol emissions suppress winter extremes over northern Eurasia. Nature Climate Change, 10, 225-230, doi:10.1038/s41558-020-0693-4.
  44. WHO, 2016: Burden of disease from the joint effects of household and ambient Air pollution for 2016. Accessed August 2, 2020, [Available online at https://www.ccacoalition.org/resources/burden-disease-joint-effects-household-and-ambient-air-pollution-2016].
  45. Xia, X., P. Wang, Y. Wang, Z. Li, J. Xin, J. Liu, and H. Chen, 2008: Aerosol optical depth over the Tibetan Plateau and its relation to aerosols over the Taklimakan Desert. Geophys. Res. Lett., 35, doi:10.1029/2008GL034981.
  46. Xie, B., H. Zhang, X. Yu, and Z. Wang, 2023: Fast and slow responses of surface air temperature in China to short-lived climate forcers. Sci. Total Environ., 882, 162888, doi: 10.1016/j.scitotenv.2023.162888.
  47. Yu, Z., and X. Li, 2015: Recent trends in daily temperature extremes over northeastern China (1960~2011). Quat. Int., 380, 35-48, doi:10.1016/j.quaint.2014.09.010.
  48. Zhu, X., S.-Y. Lee, X. Wen, Z. Ji, L. Lin, Z. Wei, Z. Zheng, D. Xu, and W. Dong, 2021: Extreme climate changes over three major river basins in China as seen in CMIP5 and CMIP6. Climate Dyn., 57, 1187-1205, doi:10.1007/s00382-021-05767-z.