DOI QR코드

DOI QR Code

A Review on Hwangjenaegyeong Somun Sagijosindaelon Chapter One Based on Melatonin Metabolism

멜라토닌 대사를 바탕으로 본 황제내경 소문 사기조신대론 제1장

  • Shin Young Park (Department of Cardiology and Neurology of Korean Medicine, College of Korean Medicine, Daejeon University) ;
  • Horyong Yoo (Department of Cardiology and Neurology of Korean Medicine, College of Korean Medicine, Daejeon University) ;
  • Junghyo Cho (Department of Hepatology and Hematology of Korean Medicine, College of Korean Medicine, Daejeon University) ;
  • Jungeun Choi (Clinical Trial Center, Daejeon Korean Medicine Hospital of Daejeon University) ;
  • Sangsoo Park (Clinical Trial Center, Daejeon Korean Medicine Hospital of Daejeon University) ;
  • Miso S. Park (Clinical Trial Center, Daejeon Korean Medicine Hospital of Daejeon University)
  • 박신영 (대전대학교 한의학과 심계내과학교실) ;
  • 류호룡 (대전대학교 한의학과 심계내과학교실) ;
  • 조정효 (대전대학교 한의학과 간계내과학교실) ;
  • 최정은 (대전대학교 대전한방병원 임상시험센터) ;
  • 박상수 (대전대학교 대전한방병원 임상시험센터) ;
  • 박미소 (대전대학교 대전한방병원 임상시험센터)
  • Received : 2023.07.05
  • Accepted : 2023.08.24
  • Published : 2023.08.25

Abstract

This paper aims to reinterpret an ancient Chinese medical book called "The Yellow Emperor's Classic of Medicine" (Hwangjenaegyeong in Korean) from the perspective of melatonin and antioxidant action. In the main body of the paper, we will first explain the changes in circadian rhythms according to the seasons through the first chapter of Somun "Sagijosindaelon". Spring, summer, autumn, and winter are introduced, and their relevance to disease is discussed. Next, the role of the suprachiasmatic nucleus in regulating circadian rhythms in mammals and the synchronization of peripheral clocks with seasonal changes is described. The relationship between light stimulation and melatonin synthesis is then addressed, noting that melatonin synthesis is normally inhibited in the presence of light and produced in the dark. However, recent studies have shown that there are more forms of melatonin that are produced in the presence of sunlight. Finally, it emphasizes the effect of light exposure on the biological clock and the importance of melatonin produced in the mitochondria, suggesting that we should focus on increasing melatonin levels. This paper reinterprets "The Yellow Emperor's Classic of Medicine" from the perspective of melatonin metabolism and provides insights into healthy living.

Keywords

Acknowledgement

이 논문은 2023학년도 대전대학교 교내학술연구비 지원에 의해 연구되었음.

References

  1. MEDICLASSICS [internet]. Daejeon: Korea Institute of Oriental Medicine. [2015]-. [cited 2023 Jun 28]. Available from: https://www.mediclassics.kr/
  2. Park M, Yoo H, Cho J, Hur W. Lifestyles according to the seasons in the Somun Sagijosindaelon> re-examined from the perspective of modern researches on circadian clock. Korean J Subhealth Med. 2023;4(1):11-22.
  3. Klarsfeld A, Birman S, Rouyer F. L'horloge circadienne a l'heure Nobel. Medecine/sciences. 2018;34(5):480-4. https://doi.org/10.1051/medsci/20183405023
  4. Reinke H, Asher G. Crosstalk between metabolism and circadian clocks. Nat Rev Mol Cell Biol. 2019;20(4):227-41. https://doi.org/10.1038/s41580-018-0096-9
  5. Hardeland R. Melatonin, hormone of darkness and more-occurrence, control mechanisms, actions and bioactive metabolites. Cell Mol Life Sci. 2008;65:2001-18. https://doi.org/10.1007/s00018-008-8001-x
  6. Rawashdeh O, Maronde E. The hormonal Zeitgeber melatonin: role as a circadian modulator in memory processing. Front Mol Neurosci. 2012;5:27.
  7. Gorman MR. Temporal organization of pineal melatonin signaling in mammals. Mol Cell Endocrinol. 2020;503:110687.
  8. Zimmerman S, Reiter RJ. Melatonin and the optics of the human body. Melatonin Res. 2019;2(1):138-60. https://doi.org/10.32794/mr11250016
  9. Tan DX, Manchester LC, Liu X et al. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes. J Pineal Res. 2013;54(2):127-38. https://doi.org/10.1111/jpi.12026
  10. Sun C, Liu L, Wang L et al. Melatonin: A master regulator of plant development and stress responses. J Integr Plant Biol. 2021;63(1):126-45. https://doi.org/10.1111/jipb.12993
  11. Coomans CP, Ramkisoensing A, Meijer JH. The suprachiasmatic nuclei as a seasonal clock. Front Neuroendocrinol. 20151;37:29-42. https://doi.org/10.1016/j.yfrne.2014.11.002
  12. Meijer JH, Michel S, VanderLeest HT, Rohling JH. Daily and seasonal adaptation of the circadian clock requires plasticity of the SCN neuronal network. Eur J Neurosci. 2010;32(12):2143-51. https://doi.org/10.1111/j.1460-9568.2010.07522.x
  13. Kalsbeek A, Cutrera RA, Van Heerikhuize JJ, Van Der Vliet J, Buijs RM. GABA release from suprachiasmatic nucleus terminals is necessary for the light-induced inhibition of nocturnal melatonin release in the rat. Neurosci. 1999;91(2):453-61. https://doi.org/10.1016/S0306-4522(98)00635-6
  14. Chattoraj A, Liu T, Zhang LS, Huang Z, Borjigin J. Melatonin formation in mammals: in vivo perspectives. Rev Endocr Metab Disord. 2009;10:237-43. https://doi.org/10.1007/s11154-009-9125-5
  15. Kerenyi NA, Sotonyi P, Somogyi E. Localizing acethyl-serotonin transferase by electron microscopy. Histochemistry. 1975;46(1):77-80. https://doi.org/10.1007/BF02463562
  16. Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Zhou XJ, Xu B. Mitochondria: central organelles for melatoni n' s antioxidant and anti-aging actions. Mol. 201824;23(2):509.
  17. Cipolla-Neto J, Amaral FG. Melatonin as a hormone: new physiological and clinical insights. Endocr Rev. 2018;39(6):990-1028. https://doi.org/10.1210/er.2018-00084
  18. Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ. Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol. 2019;10:249.
  19. Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes. J Pineal Res. 2013;54(2):127-38. https://doi.org/10.1111/jpi.12026
  20. Carrillo-Vico A, Calvo JR, Abreu P, Lardone PJ, Garcia-Maurino S, Reiter RJ, Guerrero JM. Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance. FASEB J. 2004;18(3):537-9. https://doi.org/10.1096/fj.03-0694fje
  21. Suofu Y, Li W, Jean-Alphonse FG, Jia J, Khattar NK, Li J, Baranov SV, Leronni D, Mihalik AC, He Y, Cecon E. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci. 2017;114(38):E7997-8006. https://doi.org/10.1073/pnas.1705768114
  22. Yeager RL, Oleske DA, Sanders RA, Watkins III JB, Eells JT, Henshel DS. Melatonin as a principal component of red light therapy. Med Hypotheses. 2007;69(2):372-6. https://doi.org/10.1016/j.mehy.2006.12.041
  23. Yadav A, Gupta A. Noninvasive red and near-infrared wavelength-induced photobiomodulation: promoting impaired cutaneous wound healing. Photodermatol Photoimmunol Photomed. 2017;33(1):4-13. https://doi.org/10.1111/phpp.12282
  24. Odinokov D, Hamblin MR. Aging of lymphoid organs: Can photobiomodulation reverse age-associated thymic involution via stimulation of extrapineal melatonin synthesis and bone marrow stem cells?. J Biophotonics. 2018;11(8):e201700282.
  25. Tan DX, Reiter RJ, Zimmerman S, Hardeland R. Melatonin: Both a messenger of darkness and a participant in the cellular actions of non-visible solar radiation of near infrared light. Biol. 2023;12(1):89.
  26. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res. 2016;61(3):253-78. https://doi.org/10.1111/jpi.12360
  27. Pandi-Perumal SR, BaHammam AS, Ojike NI, Akinseye OA, Kendzerska T, Buttoo K, Dhandapany PS, Brown GM, Cardinali DP. Melatonin and human cardiovascular disease. J Cardiovasc Pharmacol Ther. 2017;22(2):122-32. https://doi.org/10.1177/1074248416660622
  28. Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species?. J Pineal Res. 2007;42(1):28-42. https://doi.org/10.1111/j.1600-079X.2006.00407.x
  29. Asghari MH, Abdollahi M, de Oliveira MR, Nabavi SM. A review of the protective role of melatonin during phosphine-induced cardiotoxicity: focus on mitochondrial dysfunction, oxidative stress and apoptosis. J Pharm Pharmacol. 2017;69(3):236-43. https://doi.org/10.1111/jphp.12682
  30. Reiter RJ, Ma Q, Sharma R. Melatonin in mitochondria: mitigating clear and present dangers. Physiol. 2020;35:86-95. https://doi.org/10.1152/physiol.00034.2019
  31. Craven L, Alston CL, Taylor RW, Turnbull DM. Recent advances in mitochondrial disease. Annu Rev Genom Hum Genet. 2017;18:257-75. https://doi.org/10.1146/annurev-genom-091416-035426
  32. Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, Suomalainen A, Thorburn DR, Zeviani M, Turnbull DM. Mitochondrial diseases. Nat Rev Dis Primers. 2016;2(1):1-22. https://doi.org/10.1038/nrdp.2016.80
  33. Ma Z, Xin Z, Di W, Yan X, Li X, Reiter RJ, Yang Y. Melatonin and mitochondrial function during ischemia/reperfusion injury. Cell Mol Life Sci. 2017;74:3989-98. https://doi.org/10.1007/s00018-017-2618-6
  34. Akins NS, Nielson TC, Le HV. Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer. Curr Top Med Chem. 2018;18(6):494-504. https://doi.org/10.2174/1568026618666180523111351
  35. Palmeira CM, Moreno AJ. Mitochondrial bioenergetics. New York: Humana New York; 2018.
  36. Hickman AB, Klein DC, Dyda F. Melatonin biosynthesis: the structure of serotonin N-acetyltransferase at 2.5 A resolution suggests a catalytic mechanism. Mol Cell. 1999;3(1):23-32. https://doi.org/10.1016/S1097-2765(00)80171-9
  37. Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells?. Trends Biochem Sci. 2016;41(3):211-8. https://doi.org/10.1016/j.tibs.2015.12.001
  38. Schwartz L, T Supuran C, O Alfarouk K. The Warburg effect and the hallmarks of cancer. Anticancer Agents Med Chem. 2017;17(2):164-70. https://doi.org/10.2174/1871520616666161031143301
  39. Reiter RJ, Sharma R, Rosales-Corral S. Anti-Warburg effect of melatonin: a proposed mechanism to explain its inhibition of multiple diseases. Int J Mol Sci. 2021;22(2):764.
  40. Blask DE, Dauchy RT, Dauchy EM, Mao L, Hill SM, Greene MW, Belancio VP, Sauer LA, Davidson L. Light exposure at night disrupts host/cancer circadian regulatory dynamics: impact on the Warburg effect, lipid signaling and tumor growth prevention. PLoS One. 2014;9(8):e102776.
  41. Reiter RJ, Sharma R, Ma Q, Liu C, Manucha W, Abreu-Gonzalez P, Dominguez-Rodriguez A. Plasticity of glucose metabolism in activated immune cells: advantages for melatonin inhibition of COVID-19 disease. Melatonin Res. 2020;3(3):362-79. https://doi.org/10.32794/mr11250068
  42. Reiter RJ, Sharma R, Pires de Campos Zuccari DA, de Almeida Chuffa LG, Manucha W, Rodriguez C. Melatonin synthesis in and uptake by mitochondria: implications for diseased cells with dysfunctional mitochondria. Future Med Chem. 2021;13(04):335-9. https://doi.org/10.4155/fmc-2020-0326
  43. Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. Isolation of melatonin, the pineal gland factor that lightens melanocyteS1. J Am Chem Soc. 1958;80(10):2587.
  44. Henderson TA, Morries LD. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain?. Neuropsychiatr Dis Treat. 2015:2191-208.
  45. Samanta S. Physiological and pharmacological perspectives of melatonin. Arch Physiol Biochem. 2022;128(5):1346-67. https://doi.org/10.1080/13813455.2020.1770799
  46. Johnson JM, Minson CT, Kellogg Jr DL. Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. Compr Physiol. 2011;4(1):33-89.
  47. Laughlin MH. Skeletal muscle blood flow capacity: role of muscle pump in exercise hyperemia. Am J Physiol Heart Circ Physiol. 1987;253(5):H993-1004. https://doi.org/10.1152/ajpheart.1987.253.5.H993
  48. Saltin B, Radegran G, Koskolou MD, Roach RC. Skeletal muscle blood flow in humans and its regulation during exercise. Acta Physiol Scand. 1998;162(3):421-36. https://doi.org/10.1046/j.1365-201X.1998.0293e.x
  49. Gunton JE, Girgis CM. Vitamin D and muscle. Bone Rep. 2018;8:163-7. https://doi.org/10.1016/j.bonr.2018.04.004
  50. Emini-Sadiku M, Morina-Kuqi N. Concealing clothing leading to severe vitamin D deficiency, osteomalacia and muscle weakness. Open Access Maced J Med Sci. 2019;7(13):2146.
  51. Stacchiotti A, Favero G, Rodella LF. Impact of melatonin on skeletal muscle and exercise. Cells. 2020;9(2):288.
  52. Agil A, Elmahallawy EK, Rodriguez-Ferrer JM, Adem A, Bastaki SM, Al-Abbadi I, Solano YF, Navarro-Alarcon M. Melatonin increases intracellular calcium in the liver, muscle, white adipose tissues and pancreas of diabetic obese rats. Food Funct. 2015;6(8):2671-8. https://doi.org/10.1039/C5FO00590F
  53. Mazepa RC, Cuevas MJ, Collado PS, Gonzalez-Gallego J. Melatonin increases muscle and liver glycogen content in nonexercised and exercised rats. Life Sci. 1999;66(2):153-60. https://doi.org/10.1016/S0024-3205(99)00573-1
  54. Cheung SS, McLellan TM, Tenaglia S. The thermophysiology of uncompensable heat stress: physiological manipulations and individual characteristics. Sports Med. 2000;29:329-59. https://doi.org/10.2165/00007256-200029050-00004
  55. Zafeiratou S, Samoli E, Dimakopoulou K, Rodopoulou S, Analitis A, Gasparrini A, Stafoggia M, De'Donato F, Rao S, Monteiro A, Rai M. A systematic review on the association between total and cardiopulmonary mortality/morbidity or cardiovascular risk factors with long-term exposure to increased or decreased ambient temperature. Sci Total Environ. 2021;772:145383.
  56. Hermel M, Pelter M, Jordan T, Latif A, Gad MM, Slipczuk L, Kalra D, Virani SS. Highlights of Cardiovascular Disease Prevention Studies Presented at the 2022 European Society of Cardiology Congress. Curr Atheroscler Rep. 2022;24(12):981-93. https://doi.org/10.1007/s11883-022-01072-0
  57. Zhang YQ, Yu CH, Bao JZ. Acute effect of daily mean temperature on ischemic heart disease mortality: a multivariable meta-analysis from 12 counties across Hubei Province, China. Chin J Prev Med. 2016;50(11):990-5.
  58. Bhaskaran K, Hajat S, Haines A, Herrett E, Wilkinson P, Smeeth L. Effects of ambient temperature on the incidence of myocardial infarction. Heart. 2009;95(21):1760-9. https://doi.org/10.1136/hrt.2009.175000
  59. Alahmad B, Khraishah H, Roye D, Vicedo-Cabrera AM, Guo Y, Papatheodorou SI, Achilleos S, Acquaotta F, Armstrong B, Bell ML, Pan SC. Associations between extreme temperatures and cardiovascular cause-specific mortality: results from 27 countries. Circulation. 2023;147(1):35-46. https://doi.org/10.1161/CIRCULATIONAHA.122.061832
  60. Morimoto H. Association Analysis Identifies Risk of Ischemic Heart Disease When Temperature Increases. Int'l J Soc Sci Stud. 2016;4:55.
  61. Crandall CG, Wilson TE. Human cardiovascular responses to passive heat stress. Compr Physiol. 2015;5(1):17-43. https://doi.org/10.1002/cphy.c140015
  62. Peters A, Schneider A. Cardiovascular risks of climate change. Nature Reviews Cardiology. 2021;18(1):1-2. https://doi.org/10.1038/s41569-020-00473-5
  63. Liu C, Yavar Z, Sun Q. Cardiovascular response to thermoregulatory challenges. Am J Physiol Heart Circ Physiol. 2015;309(11):H1793-812. https://doi.org/10.1152/ajpheart.00199.2015
  64. Lee W, Kim Y, Sera F, Gasparrini A, Park R, Michelle Choi H, Prifti K, Bell ML, Abrutzky R, Guo Y, Tong S, de Sousa Zanotti Stagliorio Coelho M, Nascimento Saldiva PH, Lavigne E, Orru H, Indermitte E, Jaakkola JJK, Ryti NRI, Pascal M, Goodman P, Zeka A, Hashizume M, Honda Y, Hurtado Diaz M, Cesar Cruz J, Overcenco A, Nunes B, Madureira J, Scovronick N, Acquaotta F, Tobias A, Vicedo-Cabrera AM, Ragettli MS, Guo YL, Chen BY, Li S, Armstrong B, Zanobetti A, Schwartz J, Kim H. Projections of excess mortality related to diurnal temperature range under climate change scenarios: a multi-country modelling study. Lancet Planet Health. 2020;4(11):e512-21. https://doi.org/10.1016/S2542-5196(20)30222-9
  65. Garrett AT, Goosens NG, Rehrer NG, Patterson MJ, Cotter JD. Induction and decay of short-term heat acclimation. Eur J Appl Physiol. 2009;107:659-70. https://doi.org/10.1007/s00421-009-1182-7
  66. Garrett AT, Rehrer NJ, Patterson MJ. Induction and decay of short-term heat acclimation in moderately and highly trained athletes. Sports Med. 2011;41:757-71. https://doi.org/10.2165/11587320-000000000-00000
  67. Halonen JI, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J. Relationship between outdoor temperature and blood pressure. Occup Environ Med. 2011;68(4):296-301. https://doi.org/10.1136/oem.2010.056507
  68. Tobeiha M, Jafari A, Fadaei S, Mirazimi SM, Dashti F, Amiri A, Khan H, Asemi Z, Reiter RJ, Hamblin MR, Mirzaei H. Evidence for the benefits of melatonin in cardiovascular disease. Front Cardiovasc Med. 2022;9:888319.
  69. Michaelsen J, Fago A, Bundgaard A. High temperature impairs mitochondrial function in rainbow trout cardiac mitochondria. J Exp Biol. 2021;224(9):jeb242382.
  70. Lane N. Hot mitochondria?. PLoS Biol. 2018;16(1):e2005113.
  71. Mujahid A, Pumford NR, Bottje W, Nakagawa K, Miyazawa T, Akiba Y, Toyomizu M. Mitochondrial oxidative damage in chicken skeletal muscle induced by acute heat stress. J Poult Sci. 2007;44(4):439-45. https://doi.org/10.2141/jpsa.44.439
  72. Belhadj Slimen I, Najar T, Ghram A, Dabbebi H, Ben Mrad M, Abdrabbah M. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int J Hyperthermia. 2014;30(7):513-23. https://doi.org/10.3109/02656736.2014.971446
  73. Polla BS, Kantengwa S, Francois D, Salvioli S, Franceschi C, Marsac C, Cossarizza A. Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proc Natl Acad Sci. 1996;93(13):6458-63. https://doi.org/10.1073/pnas.93.13.6458
  74. Deng SL, Sun TC, Yu K, Wang ZP, Zhang BL, Zhang Y, Wang XX, Lian ZX, Liu YX. Melatonin reduces oxidative damage and upregulates heat shock protein 90 expression in cryopreserved human semen. Free Radic Biol Med. 2017 Dec 1;113:347-54. https://doi.org/10.1016/j.freeradbiomed.2017.10.342
  75. Bonior J, Jaworek J, Konturek SJ, Pawlik WW. Increase of heat shock protein gene expression by melatonin in AR42J cells. J Physiol Pharmacol. 2005 Sep 1;56(3):471.
  76. Prado NJ, Casarotto M, Calvo JP, Mazzei L, Ponce Zumino AZ, Garcia IM, Cuello-Carrion FD, Fornes MW, Ferder L, Diez ER, Manucha W. Antiarrhythmic effect linked to melatonin cardiorenal protection involves AT 1 reduction and Hsp70-VDR increase. J Pineal Res. 2018 Nov;65(4):e12513.
  77. Strachan P, Medarov BI. Seasonal variation in lung function. Chest. 2005;128(4):173S.
  78. Berry DJ, Hesketh K, Power C, Hypponen E. Vitamin D status has a linear association with seasonal infections and lung function in British adults. Br J Nutr. 2011;106(9):1433-40. https://doi.org/10.1017/S0007114511001991
  79. Batmaz SB, Arikoglu T, Tamer L, Eskandari G, Kuyucu S. Seasonal variation of asthma control, lung function tests and allergic inflammation in relation to vitamin D levels: a prospective annual study. Advances in Dermatology and Allergology/Postepy Dermatologii i Alergologii. 2018;35(1):99-105. https://doi.org/10.5114/ada.2017.71421
  80. Weekley LB. Influence of melatonin on bovine pulmonary vascular and bronchial airway smooth muscle tone. Clin Auton Res. 1995;5:53-6. https://doi.org/10.1007/BF01845499
  81. Sutherland ER, Ellison MC, Kraft M, Martin RJ. Elevated serum melatonin is associated with the nocturnal worsening of asthma. J Allergy Clin Immunol. 2003;112(3):513-7. https://doi.org/10.1016/S0091-6749(03)01717-2
  82. Munmun F, Witt-Enderby PA. Melatonin effects on bone: implications for use as a therapy for managing bone loss. J Pineal Res. 2021;71(1):e12749.
  83. Roth JA, Kim BG, Lin WL, Cho MI. Melatonin promotes osteoblast differentiation and bone formation. J Biol Chem. 1999;274(31):22041-7.