DOI QR코드

DOI QR Code

A Development of Teaching and Learning Model of Big data, for Elementary School Students : focusing on future capabilities

초등학생을 위한 빅데이터 교수·학습 모형개발 : 미래 역량을 중심으로

  • Yeji Kim (Dept. of Computer Education, Seoul National University of Education) ;
  • Kapsu Kim (Dept. of Computer Education, Seoul National University of Education)
  • 김예지 (서울교육대학교 컴퓨터교육과) ;
  • 김갑수 (서울교육대학교 컴퓨터교육과)
  • Received : 2023.07.21
  • Accepted : 2023.08.17
  • Published : 2023.08.31

Abstract

With the 4th Industrial Revolution, 'Big Data' is becoming a key driver of growth in various fields. Research on big data education is increasing, but most research primarily offers macroscopic directions or remains confined within a single discipline. In this study, the 'CT-CARS' model, a teaching and learning framework for big data designed specifically for elementary school students, was developed by modifying steps of utilizing big data for this age group. This model is structured around C(Concept Understanding)-T(Tools Utilization)-C(Collection of Big Data)-A(Analysis of Big Data)-R(Realization of Idea)-S(Sharing work). By applying this model, an integrated big data education program based on interdisciplinary integration was devised and implemented with 6th-grade students. The outcomes were analyzed to validate its effectiveness. Quantitative analysis revealed an improvement in learners' future capabilities, and qualitative analysis confirmed growth in understanding and attitudes towards big data. Since the CT-CARS model demonstrated significant effects in terms of knowledge, skills, and attitudes, it can be utilized as a teaching and learning model for big data utilization classes. This research shifted the focus from using big data as a 'tool' to utilizing it as a central 'purpose' in education. The CT-CARS teaching and learning model reflects educational trends and paradigm shifts, such as convergence and competency development.

4차 산업혁명 시대로 접어들면서 빅데이터는 여러 분야에서 핵심 동력이 되고 있다. 이러한 흐름에 따라 관련 연구도 증가하고 있으나 대부분 거시적 방향성을 제시하거나 단일 교과에 국한되는 등 한계를 보인다. 이에 본 연구에서는 빅데이터 활용과정을 초등 수준으로 수정하여 초등학생을 위한 빅데이터 교수·학습 모형 'CT-CARS'를 개발하였다. 본 모형은Concept(개념 이해)-Tools(도구 활용)-Collect(빅데이터 수집)-Analysis(빅데이터 분석)-Realization(아이디어 실현)-Share(작품 공유)로 구성되어 있다. 개발한 모형을 적용하여 교과 간 융합에 기반을 둔 빅데이터 활용 교육 프로그램을 구안하였으며, 6학년 학생들을 대상으로 적용한 후 결과를 분석함으로써 효과를 검증하였다. 정량적 분석을 통해 학습자의 미래 역량 향상을, 정성적 분석을 통해 빅데이터에 대한 이해도 향상 및 태도 측면의 성장을 확인할 수 있었다. 이처럼 CT-CARS 모형은 지식, 기능, 태도 측면에서 모두 유의미한 효과를 보이므로 빅데이터 활용 수업을 위한 교수·학습 모형으로 활용될 수 있다. 본 연구는 빅데이터를 '도구'로 활용하던 기존의 연구 경향에서 빅데이터 활용 자체를 교육의 '목적'으로 하는 방향으로 전환하였으며, CT-CARS 교수·학습 모형은 '융합', '역량' 등 교육적 트렌드 및 교육의 패러다임 변화를 반영하고 있다.

Keywords

References

  1. Forbes(2018). How Much Data Do We Create Every Day?. Retrieved from https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=2cbbe68460ba on April 8, 2023.
  2. OCI(연도미상). Structured vs. unstructured data types. Retrieved from https://www.oracle.com/big-data/structured-vs-unstructured-data/ on April 8, 2023.
  3. Jung, S.H., & Do, J.W. (2019). A Case Study on Operation of B ig Data Educational Program. Journal of Education & Culture, 25(5), 621-640. https://doi.org/10.24159/joec.2019.25.1.621
  4. Cho, W.J., & Yu, M.R. (2018). Creating Value for Education through Big Data Analysis Education Programs. The Korean Journal of BigData, 3(2), 123-130. https://doi.org/10.36498/kbigdt.2018.3.2.123
  5. Song, Y.A. (2020). A Case Study on the Big Data Analysis Curriculum for the Efficient Use of Data. Journal of practical engineering education, 12(1), 23-29. https://doi.org/10.14702/JPEE.2020.023
  6. Hwang, H.S. (2021). A Case Study on Application of Big Data-Based Social Studies Teaching and Learning Model. Social Studies Education, 60(1), 111-131. https://doi.org/10.37561/sse.2021.03.60.1.111
  7. Ministry of Education. (2016). Explanation of the Revised 2015 Curriculum Guidelines(Elementary School). 33-41.
  8. Cheon, Y. J. (2020). Future Science for Children, The Story of Big Data. Phampas.
  9. McKinsey. (2011). Big data: The next frontier for innovation, competition, and productivity(Executive Summary). 1-20.
  10. IDC. (2011). Extracting value from chaos. IDC's Digital Universe Study, sponsored by EMC Corporation.
  11. Russom, P. (2011). Big data analytics(TDWI best practices report). The Data Warehousing Institute(TDWI) Research, 1-40.
  12. Gartner. (2012). Gartner Infortmation Technology Glossary. Retrieved from http://www.gartner.com/it-glossary/big-data/ on June 21, 2023.
  13. IBM Developer Blog. (2017). What is big data? More than volume, velocity and variety. Retrieved from https://developer.ibm.com/blogs/what-is-big-data-more-than-volume-velocity-and-variety/ on June 21, 2023.
  14. Kim, K. S. (2018). An idol teaching and learning model for software education for elementary students. Korean Association Of Information Education, 22(6), 701-710. https://doi.org/10.14352/jkaie.2018.22.6.701
  15. Jeon, Y. J., & Kim, T. Y. (2015). A Fundamental Study on the Development of CT-CPS Framework for the Creative and Convergent Software Education. Proceedings of the Korean Association for Computer Education Conference, 19(1), 37-42.
  16. Yoon, H. N., & Kim, H. J. (2022). Effects of Instructional Design and Implementation for Big Data Utilization Inquiry Instruction in High School Earth Science Subject. The Journal of Learner-Centered Curriculum and Instruction, 22 (4), 497-513.
  17. Jang, J. H., Kim, S. Y., & Park, I. W. (2020). Development of knowledge and information processing competency Measurement Scale for Elementary School Students. Sungshin Women's University Educational Research Institute, 78, 9-30.
  18. Kim M. J., & Lee J. C. (2020). An Analysis of Knowledge Information Processing Capacity of Higher Grade Elementary School Students. Korean Association For Learner-Centered Curriculum And Instruction, 20(6), 501-524. https://doi.org/10.22251/jlcci.2020.20.6.501
  19. Jung, H. J., & Chi, E. L. (2020). Exploring the Measurement of Critical and Creative Thinking Competency for Korean Language Subject. Journal of Educational Evaluation, 33(2), 511-532. https://doi.org/10.31158/JEEV.2020.33.2.511
  20. Kim, S. Y. (2019). Development and Validation of Learning Competencies Scales: Focused on Extra Curricular's Learning Competencies of CTL. Global Creative Leader: Education & Learning, 9(5), 109-129.
  21. Sung, E. M., & Lee, S. H. (2020). Factors of Self-directed Learning Competencies of Gifted Learners and Validation of Measurement Instrument. Journal of Gifted/Talented Education, 30(1), 65-84. https://doi.org/10.9722/JGTE.2020.30.1.65
  22. Shin, Y. B., Lee, J. H, & Won, H. H. (2022). Structural analysis on the effect of learner-centered classes on creative thinking and self-management competencies of high school students through learning motivation and school happiness. The Journal of Learner-Centered Curriculum and Instruction, 22(15), 37-57.