DOI QR코드

DOI QR Code

지역 수치 모델의 영역 크기와 수평 해상도에 따른 이상적인 열대저기압의 진로와 베타자이어의 민감도 분석

Sensitivity of Ideal Tropical Cyclone's Track and Beta-gyre to Domain Size and Horizontal Resolution of Regional Numerical Model

  • 이충희 (부경대학교 지구환경시스템과학부 환경대기과학전공) ;
  • 정형빈 (부경대학교 지구환경시스템과학부 환경대기과학전공) ;
  • 강현규 ;
  • 김재진 (부경대학교 지구환경시스템과학부 환경대기과학전공)
  • Chung-Hui Lee (Division of Earth Environmental System Science (Major of Environmental Atmospheric Sciences), Pukyong National University) ;
  • Hyeong-Bin Cheong (Division of Earth Environmental System Science (Major of Environmental Atmospheric Sciences), Pukyong National University) ;
  • Hyun-Gyu Kang (Computational Earth Sciences Group, Oak Ridge National Laboratory (ORNL)) ;
  • Jae-Jin Kim (Division of Earth Environmental System Science (Major of Environmental Atmospheric Sciences), Pukyong National University)
  • 투고 : 2023.07.03
  • 심사 : 2023.08.31
  • 발행 : 2023.10.31

초록

본 연구에서는 지역 영역 기상 수치 예보 모델의 여러 수평 영역 및 수평 해상도에 따른 이상적인 열대저기압의 진로와 베타자이어의 민감도를 조사하였다. 모델의 이상적인 초기 조건은 경험적인 함수로 생성된 3차원 축대칭 모조 소용돌이와 허리케인 활동 시기의 평균 대기 조건으로 구성된다. 이때 모델 설정에 따른 이상적인 열대저기압의 변화를 분석하기 위하여 배경 흐름은 제거되었다. 수치 모델의 수평 영역 및 수평 해상도에 따른 이상적인 열대저기압의 민감도 실험을 수행하기 위해, 지역 영역 수치 모델로서 WRF (Weather Research and Forecasting) 모델을 사용하였다. 모의된 열대저기압의 바람장으로부터 베타자이어를 추출하기 위해, DFS (Double-Fourier Series) 국지 영역 고차 필터를 사용하였다. 모델의 수평 영역의 크기가 감소할수록 베타자이어의 구조와 강도가 약해졌으며, 이는 열대저기압 진로의 차이를 발생시켰다. 수평 영역의 크기를 본 연구의 실험에서 가장 작은 영역인 3,000 km×3,000 km로 설정하였을 경우에 베타자이어 통풍류의 서진 성분이 크게 감소하였으며, 수평 영역을 더 넓게 설정한 실험들에 비해 열대저기압의 진로가 동쪽으로 편향되었다. 본 결과는 열대저기압과 관련된 바람장 전체를 포함하지 못할 정도로 매우 작은 수평 영역을 사용할 경우, 열대저기압의 진로가 적절히 모의 될 수 없음을 시사한다. 반면, 5,000 km×5,000 km와 6,000 km×6,000 km의 수평 영역에서는 그 민감도가 매우 작게 나타났다. 수평 해상도가 감소할수록 이상적인 열대저기압의 진로는 매우 서쪽으로 편향되었다. 베타자이어의 크기와 강도도 수평 해상도가 감소할수록 크고 더 강하게 나타났다.

This paper investigates the sensitivities of track and beta-gyre of idealized tropical cyclones to various horizontal domain configurations of a limited-area numerical weather prediction (NWP) model. The idealized initial conditions of the model consist of a three-dimensional axisymmetric bogus vortex generated by empirical functions and the surrounding atmosphere using tropical mean soundings. The background flow is not considered in this study to focus on the effect of the model configurations on the idealized tropical cyclones. The Weather Research and Forecasting (WRF) model is used as the limited-area NWP model to perform sensitivity tests of the idealized tropical cyclones for different horizontal domain sizes and resolutions. To extract beta-gyre from the wind field of simulated tropical cyclones, a limited-area version of the double-Fourier series (DFS) high-order filter is employed. It is found that structure and intensity of the beta-gyre become weak with decreasing size of the horizontal domain, which results in differences in tropical cyclone tracks. When the domain size is set as 3,000 km×3,000 km which is the smallest domain in our experiments, the westward wind component of ventilation flow is significantly decreased, and the tropical cyclone track is biased to the east compared with other experiments. This result implies that tropical cyclone tracks are not simulated properly with too small horizontal domains that cannot cover the entire flow field associated with tropical cyclones. On the other hand, the sensitivity is very small between 5,000 km×5,000 km and 6,000 km×6,000 km domains. Tracks of the idealized tropical cyclones are significantly biased to the west as the horizontal resolution decreases. The size and intensity of beta-gyre are also found to increase and strengthen for decreased resolution.

키워드

과제정보

본 연구는 산림청(한국임업진흥원) 산림과학기술연구개발사업(2022428C10-2324-0802)의 지원에 의하여 이루어진 것입니다. 본 논문을 심사해 준 두 분의 심사자에게 감사의 뜻을 표합니다.

참고문헌

  1. Bender, M.A., Ross, R.J., Tuleya, R.E., and Kurihara, Y., 1993, Improvements in tropical cyclone track and intensity forecasts using the GFDL initialization system. Monthly Weather Review, 121, 2046-2061. https://doi.org/10.1175/1520-0493(1993)121<2046:IITCTA>2.0.CO;2
  2. Bhaskar Rao, D.V., Hari Prasad, D., and Srinivas, D., 2009, Impact of horizontal resolution and the advantages of the nested domains approach in the prediction of tropical cyclone intensification and movement. Journal of Geophysical Research, 114, D11106, doi:10.1029/2008JD011623.
  3. Carr III, L.E. and Elsberry, R.L., 1990, Observational evidence for predictions of tropical cyclone propagation relative to environmental steering. Monthly Weather Review, 121, 2046-2061.
  4. Chan, J.C.L. and Gray, W.M., 1982, Tropical cyclone movement and surrounding flow relationships. Monthly Weather Review, 110, 1354-1374. https://doi.org/10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2
  5. Chan, J.C.L. and Williams, R.T., 1987, Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part I: zero mean flow. Journal of the Atmospheric Sciences, 44, 1257-1265. https://doi.org/10.1175/1520-0469(1987)044<1257:AANSOT>2.0.CO;2
  6. Chan, J.C.L., 2005, The physics of tropical cyclone motion. Annual Review of Fluid Mechanics, 37, 99-128. https://doi.org/10.1146/annurev.fluid.37.061903.175702
  7. Chen, G., Li, T., Yang, M., Zhang, X., 2023, Evaluation of western north pacific typhoon track forecasts in global and regional models during the 2021 typhoon season. Atmosphere, 14, 499, doi:10.3390/atmos14030499.
  8. Cheong, H.-B., Kwon, I.-H., and Goo, T.-Y., 2004, Further study on the high-order double-Fourier-series spectral filtering on a sphere. Journal of Computational Physics, 193, 180-197. https://doi.org/10.1016/j.jcp.2003.07.029
  9. Cheong, H.-B., Kwon, I.-H., Kang, H.-G., Park, J.-R., Han, H.-J., and Kim, J.-J., 2011, Tropical cyclone track and intensity prediction with a structure adjustable balanced vortex. Asia-Pacific Journal of Atmospheric Sciences, 47, 293-303. https://doi.org/10.1007/s13143-011-0018-7
  10. Cheong, H.-B., Nam, Y.-J., and Lee, C.-H., 2023, Composite analysis of the beta-gyre and Rossby wave induced by tropical cyclones. Asia-Pacific Journal of Atmospheric Sciences, 59, 167-183. https://doi.org/10.1007/s13143-022-00301-5
  11. Dong, K. and Neumann, C.J., 1986, The relationship between tropical cyclone motion and environmental geostrophic flows. Monthly Weather Review, 144, 115-122. https://doi.org/10.1175/1520-0493(1986)114<0115:TRBTCM>2.0.CO;2
  12. Dunion, J.P., 2011, Rewriting the climatology of the tropical North Atlantic and Caribbean sea atmosphere. Journal of Climate, 24, 893-908. https://doi.org/10.1175/2010JCLI3496.1
  13. Fiorino, M. and Elsberry, R.L., 1989, Some aspects of vortex structure related to tropical cyclone motion. Journal of the Atmospheric Sciences, 46, 975-990. https://doi.org/10.1175/1520-0469(1989)046<0975:SAOVSR>2.0.CO;2
  14. Galarneau Jr, T.J. and Davis, C.A., 2013, Diagnosing forecast errors in tropical cyclone motion. Monthly Weather Review, 141, 405-430. https://doi.org/10.1175/MWR-D-12-00071.1
  15. Gentry, M.S.. and Lackmann, G.M., 2010, Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Monthly Weather Review, 138, 688-704. https://doi.org/10.1175/2009MWR2976.1
  16. Gopalakrishnan, S.G., Marks Jr., F., Zhang, X., Bao, J.-W., Yeh, K.-S., and Atlas, R., 2011, The experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Monthly Weather Review, 139, 1762-1784. https://doi.org/10.1175/2010MWR3535.1
  17. Goswami, P. and Mohapatra, G.N., 2013, A comparative evaluation of impact of domain size and parameterization scheme on simulation of tropical cyclones in the Bay of Bengal. Journal of Geophysical Research: Atmospheres, 119, 10-22. https://doi.org/10.1002/2013JD020592
  18. Holland, G.J., 1983, Tropical cyclone motion: Environmental interaction plus a beta effect. Journal of Atmospheric Sciences, 40, 328-342. https://doi.org/10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2
  19. Hong, S.-Y. and Lim, J.-O.J., 2006, The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42, 129-151.
  20. Janjic, Z.I., 1994, The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, 122, 927-945. https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
  21. Janjic, Z.I., 1996, The surface layer in the NCEP Eta Model. 11th conference on numerical weather prediction, American Meteorological Society, 354-355.
  22. Janjic, Z.I., 2002, Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model. NCEP Office Note No. 437, 1-61.
  23. Jin, H., Peng, M.S., Jin, Y., and Doyle, J.D., 2014, An evaluation of the impact of horizontal resolution on tropical cyclone predictions using COAMPS-TC. Weather and Forecasting, 29, 252-270. https://doi.org/10.1175/WAF-D-13-00054.1
  24. Kain, J.S., 2004, The Kain-Fritsh convective parameterization: An update. Journal of Applied Meteorology and Climatology, 43, 1 70-1 81 . https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  25. Kwon, I.-H. and Cheong, H.-B., 2010, Tropical cyclone initialization with a spherical high-order filter and an idealized three-dimensional bogus vortex. Monthly Weather Review, 138, 1344-1367. https://doi.org/10.1175/2009MWR2943.1
  26. Landman, W.A., Seth, A., and Camaro, S.J., 2005, The effect of regional climate model domain choice on the simulation of tropical cyclone-lick vortices in the southwestern Indian ocean. Journal of Climate, 18, 1263-1274. https://doi.org/10.1175/JCLI3324.1
  27. Lee, J.-D., Cheong, H.-B., Kang, H.-G., and Kwon, I.-H., 2014, Tropical cyclone track and intensity forecast using asymmetric 3-dimensional bogus vortex. Atmosphere, 24, 207-223. https://doi.org/10.14191/ATMOS.2014.24.2.207
  28. Magnusson, L., Bidlot, J.-R., Bonavita, M., Brown, A.R., Browne, P.A., De Chiara, G., Dahoui, M., Lang, S.T.K., McNally, T., Mogensen, K.S., Pappenberger, F., Prates, F., Rabier, F., Richardson, D.S., Vitart, F., and Malardel, S., ECMWF activities for improved hurricane forecasts. 2019, Bulletin of the American meteorological Society, 445-458.
  29. Moon, J., Park, J., and Cha, D.-H., 2021, Does incresing model resolution improve the real-time forecasts of western north pacific tropical cyclones?. Atmosphere, 12, 776, doi:10.3390/atmos12060776.
  30. Moon, J., Park, J., Cha, D.-H., and Moon, Y., 2021, Five-day track forecast skills of WRF model for the western north pacific tropical cyclones. Weather and Forecasting, 36, 1491-1503. https://doi.org/10.1175/WAF-D-20-0092.1
  31. Nam, Y.-J. and Cheong, H.-B., 2020, Rossby waves and beta gyre associated with tropical cyclone-scale barotropic vortex on the sphere. Journal of the Korean earth Science society, 41, 344-355. https://doi.org/10.5467/JKESS.2020.41.4.344
  32. Ooyama, K., 1969, Numerical simulation of the life cycle of tropical cyclones. Journal of the Atmospheric Sciences, 26, 3-40. https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2
  33. Park, J.-R., Cheong, H.-B., and Kang, H.-G., 2011, High-order spectral filter for the spherical-surface limited area. Monthly Weather Review, 139, 1256-1278. https://doi.org/10.1175/2010MWR3440.1
  34. Perez-Alarcon, A., Sori, R., Fernandez-Alvarez, J.C., Nieto, R., and Gimeno, L., 2021, Comparative climatology of outer tropical cyclone size using radial wind profiles. Weather and Climate Extremes, 33. 100366, doi:10.1016/j.wace.2021.100366.
  35. Rosenthal, S.L., 1971, The response of a tropical cyclone model to variations in boundary layer parameters, initial conditions, lateral boundary conditions, and domain size. Monthly Weather Review, 99, 767-777. https://doi.org/10.1175/1520-0493(1971)099<0767:TROATC>2.3.CO;2
  36. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Liu, Z., Berner, J., ... Huang, X., 2021, A Description of the Advanced Research WRF Model Version 4.3. No. NCAR/TN-556+STR, doi:10.5065/1dfh-6p97.
  37. Smith, R.K., Ulrich, W., and Dietachmayer G., 1990, A numerical study of tropical cyclone motion using a barotropic model. I: The role of vortex asymmetries. Quarterly Journal of the Royal Meteorological Society, 116, 337-362. https://doi.org/10.1002/qj.49711649206
  38. Wang, B., Elsberry, R.L., Wang, Y., and Wu, L., 1998, Dynamics in tropical cyclone motion: A review. Chinese Journal of Atmospheric Sciences, 22, 416-434.
  39. Williams, R.T., and Chan, J.C.L., 1994, Numerical studies of the beta effect in tropical cyclone motion. Part II: Zonal mean flow effects. Journal of the Atmospheric Sciences, 51, 1065-1076. https://doi.org/10.1175/1520-0469(1994)051<1065:NSOTBE>2.0.CO;2
  40. Wu, L., and Wang, B., 2000, A potential vorticity tendency diagnostic approach for tropical cyclone motion. Monthly Weather Review, 128, 1899-1911. https://doi.org/10.1175/1520-0493(2000)128<1899:APVTDA>2.0.CO;2