DOI QR코드

DOI QR Code

Force monitoring of Galfan cables in a long-span cable-truss string-support system based on the magnetic flux method

  • Yuxin Zhang (School of Civil Engineering, Shanghai Normal University) ;
  • Xiang Tian (School of Civil Engineering, Shanghai Normal University) ;
  • Juwei Xia (Space Structures Research Center, Zhejiang University) ;
  • Hexin Zhang (School of Computing, Engineering and the Built Environment, Edinburgh Napier University)
  • 투고 : 2023.09.12
  • 심사 : 2023.09.20
  • 발행 : 2023.09.25

초록

Magnetic flux sensors are commonly used in monitoring the cable force, but the application of the sensors in large diameter non-closed Galfan cables, as those adopted in Yueqing Gymnasium which is located in Yueqing City, Zhejiang Province, China and is the largest span hybrid space structure in the world, is seldom done in engineering. Based on the construction of Yueqing Gymnasium, this paper studies the cable tension monitoring using the magnetic flux method across two stages, namely, the pre-calibration stage before the cable leaves the rigging factory and the field tension formation stage of the cable system. In the pre-calibration stage in the cable factory, a series of 1:1 full-scale comparative tests were carried out to study the feasibility and relability of this kind of monitoring method, and the influence on the monitoring results of charging and discharging voltage, sensor location, cable diameter and fitting method were also studied. Some meaningful conclusions were obtained. On this basis, the real-time cable tension monitoring system of the structure based on the magnetic flux method is established. During the construction process, the monitoring results of the cables are in good agreement with the data of the on-site pressure gauge.The work of this paper will provide a useful reference for cable force monitoring in the construction process of long-span spatial structures.

키워드

과제정보

The calibration test work in this paper was carried out in China Juli rigging Co., Ltd. and we sincerely thank Juli rigging Co., Ltd. for its strong support.

참고문헌

  1. Acampora, A., Macdonald, J.H.G., Georgakis, C.T. and Nikitas, N. (2014), "Identification of aeroelastic forces and static drag coefficients of a twin cable bridge stay from full-scale ambient vibration measurements", J. Wind Eng. Ind. Aerod., 124, 90-98. https://doi.org/10.1016/j.jweia.2013.10.009.
  2. Azim, M.R., Zhang, H. and Gui, M. (2020), "Damage detection of railway bridges using operational vibration data: theory and experimental verifications", Struct. Monit. Maint., 7(2), 149-166. https://doi.org/10.12989/smm.2020.7.2.149.
  3. Barnard, N.C. and Brown, S.G.R. (2008), "Modelling the relationship between microstructure of Galfan-type coated steel and cut-edge corrosion resistance incorporating diffusion of multiple species", Corrosion Sci., 50(10), 2846-2857. https://doi.org/10.1016/j.corsci.2008.07.005.
  4. Camassa, D., Castellano, A., Fraddosio, A., Miglionico, G. and Piccioni, M.D. (2021), "Dynamic identification of tensile force in tie-rods by interferometric radar measurements", Appl. Sci., 11(8), 3687. https://doi.org/10.3390/app11083687.
  5. Coarita, E. and Flores, L. (2015), "Nonlinear analysis of structures cable - truss", Int. J. Eng. Technol., 7(3).
  6. Dong, Z., Fan, P., Li, P. Mao. Y. (2020), "Experimental study on the sensitive parameters of nondestructive test method for the cable based on the leakage magnetic principle", Proceedings of the 2nd International Conference on Environmental Prevention and Pollution Control Technologies(EPPCT2020), 474, 1877-1884. https://doi.org/10.26914/c.cnkihy.2020.055545.
  7. Furukawa, A., Suzuki, S. and Kobayashi, R. (2022), "Tension estimation method for cable with damper using natural frequencies and two-point mode shapes with uncertain modal order", Front. Built Environ., 8. https://doi.org/10.3389/fbuil.2022.906871.
  8. Gaute Alonso, A., Garcia Sanchez, D., Alonso Cobo, C. and Calderon Uriszar Aldaca, I. (2022), "Temporary cable force monitoring techniques during bridge construction-phase: The Tajo River Viaduct experience", Scientific Reports, 12, 7689. https://doi.org/10.1038/s41598-022-11746-z.
  9. Geuzaine, M., Foti, F. and Denoel, V. (2021), "Minimal requirements for the vibration-based identification of the axial force, the bending stiffness and the flexural boundary conditions in cables", J. Sound Vib., 511. https://doi.org/10.1016/j.jsv.2021.116326.
  10. Han, S.E. and Koh, H.S. (2008), "Dynamic behavior characteristics of the open-shaped hybrid dome Structural system subjected to wind loads", J. Architect. Inst. Korea Struct. Constr., 24(8), 131-138.
  11. Huang, H., Yin, C. and Wang, X. "Application of magnetic flux sensor in cable force monitoring of closed high vanadium cable", Sci. Technol. Innov. Herald, 18(16), 24-27, (In Chinese).
  12. Huynh, T.C. and Kim, J.T. (2014), "Impedance-based cable force monitoring in tendon-anchorage using portable PZT-interface technique", Math. Probl. Eng., https://doi.org/10.1155/2014/784731.
  13. Jakiel, P. and Manko, Z. (2017), "Estimation of cables' tension of cable-stayed footbridge using measured natural frequencies", MATEC Web of Conferences, 107, 00006. https://doi.org/10.1051/matecconf/201710700006.
  14. Kernicky, T., Whelan, M. and Al-Shaer, E. (2018), "Dynamic identification of axial force and boundary restraints in tie rods and cables with uncertainty quantification using Set Inversion Via Interval Analysis", J. Sound Vib., 423, 401-420. https://doi.org/10.1016/j.jsv.2018.02.062.
  15. Kim, B.H. and Park, T. (2007), "Estimation of cable tension force using the frequency-based system identification method", J. Sound Vib., 304(3-5), 660-676. https://doi.org/10.1016/j.jsv.2007.03.012.
  16. Kim, J.T., Huynh, T.C. and Lee, S.Y. (2014), "Wireless structural health monitoring of stay cables under two consecutive typhoons", Struct. Monit. Maint., 1(1), 47-67. https://doi.org/10.12989/smm.2014.1.1.047.
  17. Kim, S.W., Jeon, B.G., Kim, N.S. and Park, J.C. (2013), "Vision-based monitoring system for evaluating cable tensile forces on a cable-stayed bridge", Struct. Health Monit., 12(5-6). https://doi.org/10.1177/147592171350051.
  18. Lai, G.G., Yang, C. and Su, C.T. (2010), "Estimation and management of magnetic flux density produced by underground cables in multiple-circuit feeders", Eur. T. Electrical Power, 20(5), 545.558. https://doi.org/10.1002/etep.333.
  19. Lai, G.G., Yang, C.F. and Su, C.T. (2010), "Estimation and management of magnetic flux density produced by underground cables in multiple-circuit feeders", Eur. T. Elec. Power, 20(5), 545-558. https://doi.org/10.1002/etep.333.
  20. Li, Z., Zhang, Z. and Dong, S. (2015), "Introduction to the design of the long-span space rope truss architecture of Yueqing Sports Center Stadium", Spatial Struct., 21(4), 38-44. https://doi.org/10.13849/j.issn.1006-6578.2015.04.038.
  21. Li, Z., Zhang, Z. and Yu, W. (2017), "Design and analysis of cord truss string structure of Yueqing Sports Center Gymnasium", Struture, 47(11), 82-86. https://doi.org/10.19701/j.jzjg.2017.11.014.
  22. Liu, H., Guo, L., Chen, Z., Meng, Y. and Zhang, Y. 2021), "Study on bonding mechanism of hot-cast anchorage of Galfan-coated steel cables", Eng. Struct., 246, 112980. https://doi.org/10.1016/j.engstruct.2021.112980.
  23. Liu, L., Li, C., Li., R. and Feng. H. (2017), "An extended Preisach model for effects of magnetization history on magnetomechanical behavior of steel cables", Smart Struct. Mater. + Nondestructive Eval. Health Monit., https://doi.org/10.1117/12.2258361.
  24. Mike, J.C. (2012), "Fifty years of progress for shell and spatial structures", Proceedings of the Institution of Civil Engineers - Engineering History and Heritage, 2. https://doi.org/10.1680/ehah.12.00003.
  25. Morgenthal, G., Rau, S., Taraben, J. and Abbas, T. (2018), "Determination of stay-cable forces using highly mobile vibration measurement devices", J. Bridge Eng., 23(2). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001166.
  26. Park, S., Kim, J.W., Lee, C. and Lee, J.J. (2014), "Magnetic flux leakage sensing-based steel cable NDE technique", Shock Vib., https://doi.org/10.1155/2014/929341.
  27. Park, S., Kim, J.W., Lee, C., Lee, J. and Gil, H.B. (2012), "Local fault detection technique for steel cable using multi-channel magnetic flux leakage sensor", J. Comput. Struct. Eng. Inst. Korea, 25(4), 287-292. https://doi.org/10.7734/COSEIK.2012.25.4.287.
  28. Park, S.H., Kim, J.W., Nam, M.J. and Lee, J.J. (2012), "Magnetic flux leakage sensing-based steel cable NDE technique incorporated on a cable climbing robot for bridge structures", Adv. Sci. Technol., 83, 217-222. https://doi.org/10.4028/www.scientific.net/AST.83.217.
  29. Ren, L., Xiu, C., Li, H., Lu, Y., Wang, J. and Yao, X. (2018), "Development of elasto-magnetic (EM) sensor for monitoring cable tension using an innovative ratio measurement method", Smart Mater. Struct., 27. https://doi.org/10.1088/1361-665X/aae0b0.
  30. Schroppel, W. (2014), "Bauen mit Leichtigkeit - Ein spannendes Montagekonzept", Stahlbau, 83(6), 406-411. https://doi.org/10.1002/stab.201410165.
  31. Sun, G., Li, X. and Wu, J. (2020), "Postfire mechanical properties of Galfan-coated steel cables", Fire Mater., 44(7), 909-922. https://doi.org/10.1002/fam.2892.
  32. Sun, G., Li, X., Xue, S. and Chen, R. (2019), "Mechanical properties of Galfan-coated steel cables at elevated temperatures", J. Constr. Steel Res., 155, 331-341. https://doi.org/10.1016/j.jcsr.2019.01.002.
  33. Sun, G., Xiao, S. and Qu, X. (2021), "Thermal-mechanical deformation of Galfan-coated steel strands at elevated temperatures", J. Constr. Steel Res., 180. https://doi.org/10.1016/j.jcsr.2021.106574.
  34. Wang, M.L., Chen, Z.L. and Koontz, S.S. (2000), "Magnetoelastic method of stress monitoring in Steel Tendons and Cables", Nondestruct. Eval. Highways,Utilities, Pipelines IV., Proceedings of SPIE.
  35. Wang, M.L., Lloyd, G. and Hovorka, O. (2001), "Development of a remote coil magneto-elastic stress sensor for steel cables", Proceedings of the SPIE 8th Annual International Symposium on Smart Structures and Material, Health Monitoring and Management of Civil Infrastructure Systems, New port Beach CA.
  36. Wang, S., Chen, Z., Liu, H. and Yu, Y. (2018), "Experimental study on stress relaxation properties of structural cables", Constr. Build. Mater., 175, 777-789. https://doi.org/10.1016/j.conbuildmat.2018.04.224.
  37. Wang, S., Wang, W., Su, Y., et al. "Magnetic model of the relationship between relative permeability change and stress of ferromagnetic materials", J. Xi'an Univ. Sci. Technol., 25(3), (In Chinese).
  38. Xiong, E., Wang, S. and Miao, X. (2012), "Research on magnetomechanical coupling effect of Q235 steel member specimens", J. Shanghai Jiaotong Univ. (Science), 17, 605-612. https://doi.org/10.1007/s12204-012-1332-7.
  39. Yishu, Z., Jinning, Z., Liu, C. and Cao, J. (2019), "Performance analysis of by-pass excitation cable force sensor", IOP Conference Series: Mater. Sci. Eng., 647, 012017. https://doi.org/10.1088/1757-899x/647/1/012017.
  40. Yishu, Z., Ping, A., Jinjin, C., Jinning, Z. and Chang, L. (2019). "Design of by-pass excitation cable force sensor", J. Phys.: Conference Series. https://doi.org/10.1088/1742-6596/1267/1/012068.
  41. Yu, Z., Shao, S., Liu, N., Zhou, Z., Feng, L., Du, P. and Tang, J. (2021), "Cable tension identification based on near field radiated acoustic pressure signal", Measurement, 178. https://doi.org/10.1016/j.measurement.2021.109354.
  42. Yuan, J. and Wu, S. (2011), "Experimental study on stress-magnetic effect of cable", Proceedings of SPIE 2011 International Conference on Photonics, 3D-Imaging, and Visualization, 313-317.
  43. Zhang, S.C., Xu, X.M., Gao, F., Luo, B., Shi, W.Z. and Fang, Q. (2022), "Experimental study on corrosion of galfan-coated full-locked coil ropes in a natatorium environment", Adv. Civil Eng., 2022, https://doi.org/10.1155/2022/9777836.
  44. Zhang, Z., Ding, J. and Zhang, Y. (2014), "Research on the structural composition of annular truss and its engineering application", J. Build. Struct., 35(4), 11-19. https://doi.org/10.14006/j.jzjgxb.2014.04.004.
  45. Zurru, M. (2021), "Non-linear normal modes of plane cable trusses", Comput. Struct., 257, https://doi.org/10.1016/j.compstruc.2021.106662.