DOI QR코드

DOI QR Code

Research on the Development of Conductive Composite Yarns for Application to Textile-based Electrodes and Smartwear Circuits

스마트웨어용 텍스타일형 전극 및 배선으로의 적용을 위한 전도성 복합사 개발 연구

  • Hyelim Kim (Material and Component Convergence R&D Department, Korea Institute of Industrial Technology) ;
  • Soohyeon Rho (Material and Component Convergence R&D Department, Korea Institute of Industrial Technology) ;
  • Wonyoung Jeong (Material and Component Convergence R&D Department, Korea Institute of Industrial Technology)
  • 김혜림 (한국생산기술연구원 소재부품융합연구부문) ;
  • 노수현 (한국생산기술연구원 소재부품융합연구부문) ;
  • 정원영 (한국생산기술연구원 소재부품융합연구부문)
  • Received : 2023.09.13
  • Accepted : 2023.10.12
  • Published : 2023.10.31

Abstract

This study aimed to research the local production of conductive composite yarn, a source material used in textile-type electrodes and circuits. The physical properties of an internationally available conductive composite yarn were analyzed. To manufacture the conductive composite yarn, we selected one type of conductive yarn with Ag-coated polyamide of 150d 1 ply, along with two types of polyethylene terephthalate (PET) with circular and triangular cross-sections, both with 150d 1 ply. The conductive composite yarn samples were manufactured at 250, 500, 750, and 1000 turns per meter (TPM). For both conductive composite yarn samples manufactured from two types of PET filaments, the twist contraction rate of the sample with a triangular cross-section was stable. Among the samples, the tensile strength of the sample manufactured at 750 TPM was the highest at approximately 4.1gf/d; the overall linear resistance was approximately 5.0 Ω/cm, which is within the target range. It was confirmed that the triangular cross-section sample manufactured with 750 TPM had a similar linear resistance value to the advanced product despite the increase in the number of twists. In future studies, we plan tomanufacture samples by varying the twist conditions to derive the optimal conductive yarn suitable for smartwear and smart textile manufacturing conditions.

Keywords

Acknowledgement

본 연구는 한국생산기술연구원 생산기술국제공동연구사업(KITECH JE-23-0015)의 지원으로 수행되었습니다.

References

  1. Ahmad, J., & Zhou, Z. (2022). Mechanical properties of natural as well as synthetic fiber reinforced concrete - A review. Construction and Building Materials, 333, 127353. doi:10.1016/j.conbuildmat.2022.127353
  2. Ahsan, M., & Teay, S. H., & Sayem, A. S. M., & Albarbar, A. (2022). Smart clothing framework for health monitoring applications. Signals, 3, 113-145. doi:10.3390/signals3010009
  3. Arias-Monje, P. J., Lu, M., Kirmani, M. H., & Kumar, S. (2020). Processing, structure and properties of polyacrylonitrile fibers with 15 weight percent single wall carbon nanotubes. Polymer, 211, 123065. doi:10.1016/j.polymer.2020.123065
  4. Braun E., & Levin, B. C. (1987) Nylons - A review of the literature on products of combustion and toxicity. Fire and Materials, 11, 71-88. doi:10.1002/fam.810110204
  5. Choi, M., Vu, C., & Kim, J. (2021). Effects of Ag-coated twisted-yarns and equivalent circuits on textile pressure sensors. Sensors and Actuators - A. Physical, 332, 113150. doi:10.1016/j.sna.2021. 113150
  6. Das, B. D., Kothari, V. K., Fanguiero, R., & Araujo, M. (2008). Effect of fibre diameter and cross-sectional shape on moisture transmission through fabrics. Fibers and Polymers, 9(2), 225-231. doi:10.1007/s12221-008-0036-y
  7. Dyson, M., & Ghaffarzadeh, K. (2020). Flexible hybrid electronics 2020-2030 - Applications, challenges, innovations and forecasts. IDTechEx, Cambridge, UK.
  8. He, H., Wu, P., Yang, Z., Shi, Z., Yu, W., Liu, F., Zhu, F., Zheng, Q., Zhang, D., & Li, S. (2022). A facile way to modify polyester fabric to enhance the adhesion behavior to rubber. Coatings, 12, 1344. doi:10.3390/coatings12091344
  9. Hong, S., Nam, J., Park, S., Lee, D., Park, M., Lee, D. S., ... & Hwang, J. Y. (2021). Carbon nanotube fibers with high specific electrical conductivity - Synergistic effect of heteroatom doping and densification. Carbon, 184, 207-213. doi:10.1016/j.carbon.2021.08.024
  10. Hou, S., Lv, Z., Wu, H., Cai, X., Chu, Z., & Zou, D. (2012). Flexible conductive threads for wearable dye-sensitized solar cells. Journal of Materials Chemistry, 22(14), 6549-6552. doi:10.1039/C2JM16773E
  11. Hu, X-C., & Yang, H. H. (2000). Polyamide and polyester fibers. In A. Kelly & C. Zweben (Eds.), Comprehensive Composite Materials (pp. 327-344). Pergamon, Oxford.
  12. Jeon, T. H., & Lee, J. S. (2002). Effect of twisting conditions of filament yarns on the twist contraction. Journal of the Korean Fiber Society, 39(1), 48-55.
  13. Jung, I., & Lee, S. (2018). Durability evaluation of stainless steel conductive yarn under various sewing method by repeated strain and abrasion test. Journal of Korean Society Clothing Textile, 42, 474-485. doi:10.5850/JKSCT.2018.42.3.474
  14. Karaca, E., Kahraman, N., Omeroglu, S., & Becerir, B. (2012). Effects of fiber cross sectional shape and weave pattern on thermal comfort properties of polyester woven fabrics. Fibres and Textiles in Eastern Europe, 20(3), 67-72.
  15. Karaca, E., Omeroglu, S., & Becerir, B. (2015). Effects of fiber cross-sectional shapes on tensile and tearing properties of polyester woven fabrics. Textile and Apparel, 25(4), 313-318.
  16. Kim, H., Kim, E., Choi, C., & Yeo, W. H. (2022a). Advances in soft and dry electrodes for wearable health monitoring devices. Micromachines, 13, 629. doi:10.3390/mi13040629
  17. Kim, H., Rho, S., Lim, D., & Jeong, W. (2023). Characterization of embroidered textile-based electrode for EMG smart wear according to stitch technique. Fashion and Textiles, 10, 32. doi:10.1186/s40691-023-00351-x
  18. Kim, S., Lee, S., & Jeong, W. (2020). EMG Measurement with textile-based electrodes in different electrode sizes and clothing pressures for smart clothing design optimization. Polymers, 12, 2406. doi:10.3390/polym12102406
  19. Kim, S. G., Choi, G. M., Jeong, H. D., Lee, D., Kim, S., Ryu, K. H., ... & Ku, B. C. (2022b). Hierarchical structure control in solution spinning for strong and multifunctional carbon nanotube fibers. Carbon, 196, 59-69. doi:10.1016/j.carbon.2022.04.040
  20. Kucuk, M., & Ovecoglu, M. L. (2018). Surface modification and characterization of polyester fabric by coating with low temperature synthesized ZnO nanorods. Journal of Sol-Gel Science and Technology, 88, 345-358. doi:10.1007/s10971-018-4817-5
  21. Lee, S., Kim, H. & Jeong, W. (2023). Development and evaluation of wearable smart clothing for combined EMG devices. Fashion & Textile Research Journal, 25(2), 210-220. doi:10.5805/SFTI.2023.25.2.210
  22. Lu, M., Liao, J., Gulgunje, P. V., Chang, H., Arias-Monje, P. J., Ramachandran, J., Breedveld, V., & Kumar, S. (2021). Rheological behavior and fiber spinning of polyacrylonitrile (PAN)/Carbon nanotube (CNT) dispersions at high CNT loading. Polymer, 215, 123369. doi:10.1016/j.polymer.2020.123369
  23. 'Madeira', (n.d.). Madeira USA. Retrieved August 31, 2023, https://www.madeirausa.com/hc-12-sp-highly-conductive-embroiderythread-12.html
  24. Medvetski, S. S., Ryklin, D. B., & Davidziuk, V. V. (2021). Research of influence of blended yarn structure including stainless steel fibers on its properties. IOP Conference Series: Materials Science and Engineering, 1031, 012042. doi:10.1088/1757-899X/1031/1/012042
  25. Pannase, A. M., Singh, R. K., Ruj, B., & Gupta, P. (2020). Decomposition of polyamide via slow pyrolysis - Effect of heating rate and operating temperature on product yield and composition. Journal of Analytical and Applied Pyrolysis, 151(104886). doi:10.1016/j.jaap.2020.104886
  26. Rho, S. H., Lee, S., Lim, D. Y., & Jeong, W. (2022). Study of the optimization of embroidery design parameters for the technical embroidery machine - Derivation of the correlation between thread consumption and electrical resistance. Textile Research Journal, 92(9-10), 1550-1564. doi:10.1177/00405175211061028
  27. Ryklin, D., & Medvetski, S. (2017). Investigation of the technology of conductive yarns manufacturing. In IOP Conference Series - Materials Science and Engineering, 254(7), 072021. doi:10.1088/1757-899X/254/7/072021
  28. 'Silver-tech'. (n. d.). Amann group. Retrieved August 31, 2023, from https://www.amann.com/products/product/silver-tech/
  29. 'Shieldex'. (n. d.). Shieldex. Retrieved August 31, 2023, from https://www.shieldex.de/en/
  30. Shuvo, I. I., Shah, A., & Dagdeviren, C. (2022). Electronic textile sensors for decoding vital body signals - State-of-the-art review on characterizations and recommendations. Advanced Intelligent Systems, 4, 2100223. doi:10.1002/aisy.202100223
  31. 'Soitex'. (n. d.). Soitex. Retrieved August 31, 2023, from https://smartstore.naver.com/zip/products/7617092963
  32. Tang, X., Cheng, D., Ran, J., Li, D., He, C., Bi, S., Cai, G., & Wang, X. (2021). Recent advances on the fabrication methods of nanocomposite yarn-based strain sensor. Nanotechnology Reviews, 10, 221-236. doi:10.1515/ntrev-2021-0021
  33. Tao, Y., Li, T., Yang, C., Wang, N., Yan, F., & Li, L. (2018). The influence of fiber cross-section on fabric far-infrared properties. Polymers, 10, 1147. doi:10.3390/polym10101147.
  34. Toydemįr, Y., & Bayramol, D. Y. (2021). Properties investigation of polyester yarns with different cross-sections. BEU Journal of Science, 10(1), doi:10.17798/bitlisfen.793752.
  35. Zhao, J., Deng, J., Liang, W., Zhao, L., Dong, Y., Wang, X., & Lin, L. (2022). Water-retentive, 3D knitted textile electrode for long-term and motion state bioelectrical signal acquisition. Composites Science and Technology, 227, 109606. doi:10.1016/j.compscitech.2022.109606