DOI QR코드

DOI QR Code

Comparative Analysis of Anticancer and Antibacterial Activities among Seven Trametes Species

  • Ha Thi Kim Nguyen (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Jiwon Lee (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Yejin Park (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Hyon Jin Park (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Soon Kil Ahn (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Jae Kwang Kim (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Dong-Ku Kang (Department of Chemistry, College of Natural Sciences, Incheon National University) ;
  • Minkyeong Kim (Species Diversity Research Division, National Institute of Biological Resources) ;
  • Chorong Ahn (Species Diversity Research Division, National Institute of Biological Resources) ;
  • Changmu Kim (Species Diversity Research Division, National Institute of Biological Resources) ;
  • Jaehyuk Choi (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
  • 투고 : 2023.06.14
  • 심사 : 2023.08.08
  • 발행 : 2023.08.31

초록

Species in the genus Trametes (Basidiomycota, Polyporales) have been used in natural medicine for a long time. Many studies reported that mycelia or fruiting bodies of Trametes spp. exhibited effects of antioxidant, anti-inflammatory, anticancer, and antimicrobial activities. However, comparative analysis in this genus is scarce due to limitation of morphological identification and the sample number. In this study, the 19 strains of seven Trametes species were chosen to generate a five-gene-based phylogeny with the 31 global references. In addition, 39 culture extracts were prepared for 13 strains to test for anticancer and antibacterial activities. Strong anticancer activities were found in several extracts from T. hirsuta and T. suaveolens. Anticancer activities of T. suaveolens, T. cf. junipericola and T. trogii were first described here. The antibacterial ability of T. versicolor and T. hirsuta extracts has been confirmed. The antibacterial activities of T. suaveolens have been reported at the first time in this study. These results suggest an efficient application of the genus Trametes as the drug resources especially for anticancer agents.

키워드

과제정보

The authors thank to Dr. Young Won Lim (KMRB) for the support with the Trametes species strains.

참고문헌

  1. Yadav D, Negi PS. Bioactive components of mushrooms: processing effects and health benefits. Food Res Int. 2021;148:110599. doi: 10.1016/j.foodres.2021.110599. 
  2. An G-H, Han J-G, Cho J-H. Antioxidant activities and b-glucan contents of wild mushrooms in Korea. J Mushroom. 2019;17:144-151. doi: 10.14480/JM.2019.17.3.144. 
  3. Im KH, Choi J, Baek SA, et al. Antioxidant and inflammation inhibitory effects from fruiting body extracts of Ganoderma applanatum. J Mushroom. 2021;19:261-271. doi: 10.14480/JM.2021.19.4.261. 
  4. Chaturvedi VK, Agarwal S, Gupta KK, et al. Medicinal mushroom: boon for therapeutic applications. 3 Biotech. 2018;8(8):334. doi: 10.1007/s13205-018-1358-0. 
  5. Lee YH, Kim M, Park HJ, et al. Chemical screening identifies the anticancer properties of Polyporous parvovarius. J Cancer. 2023;14(1):50-60. doi: 10.7150/jca.78302. 
  6. Lee T-S,. The full list of recorded mushrooms in Korea. Kor J Mycol. 1990;18:233-259. 
  7. Zmitrovich IV, Ezhov ON, Wasser SP. A survey of species of genus Trametes Fr. (higher basidiomycetes) with estimation of their medicinal source potential. Int J Med Mushrooms. 2012;14(3):307-319. doi: 10.1615/intjmedmushr.v14.i3.70. 
  8. Kim M, Lee JS, Park JY, et al. First report of six macrofungi from Daecheongdo and Socheongdo islands, Korea. Mycobiology. 2021;49(5):454-460. doi: 10.1080/12298093.2021.1970957. 
  9. Kim M, Ahn C, Kim C. Antioxidant activity of indigenous Trametes species in Korea. Kor J Mycol. 2021;49:433-440. doi: 10.4489/KJM.20210042. 
  10. Awadasseid A, Hou J, Gamallat Y, et al. Purification, characterization, and antitumor activity of a novel glucan from the fruiting bodies of Coriolus versicolor. PLOS One. 2017;12(2):e0171270. doi: 10.1371/journal.pone.0171270. 
  11. Hapuarachchi KK, Karunarathna SC, Xu X-H, et al. A review on bioactive compounds, beneficial properties and biotechnological approaches of Trametes (Polyporaceae, Polyporales) and a new record from Laos. Chiang Mai J Sci. 2021;48:674-698. 
  12. Munoz-Castiblanco T Mejia-Giraldo, JC, P-MM. Trametes genus, a source of chemical compounds with anticancer activity in human osteosarcoma: a systematic review. J Appl Pharm Sci. 2020;10:121-129.  https://doi.org/10.7324/JAPS.2020.104015
  13. Justo A, Hibbett DS. Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five-marker dataset. Taxon. 2011;60(6):1567-1583. doi: 10.1002/tax.606003. 
  14. Shen W, Le S, Li Y, et al. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLOS One. 2016;11(10):e0163962. doi: 10.1371/journal.pone.0163962. 
  15. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-1797. doi: 10.1093/nar/gkh340. 
  16. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312-1313. doi: 10.1093/bioinformatics/btu033. 
  17. Yu GC, Smith DK, Zhu HC, et al. GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8(1):28-36. doi: 10.1111/2041-210X.12628. 
  18. Hudzicki J. Kirby-Bauer disk diffusion susceptibility test protocol. ASM. 2009;15:55-63. 
  19. Puri SC, Nazir A, Chawla R, et al. The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol. 2006;122(4):494-510. doi: 10.1016/j.jbiotec.2005.10.015. 
  20. Knezevic A, Stajic M, Sofrenic I, et al. Antioxidative, antifungal, cytotoxic and antineurodegenerative activity of selected Trametes species from Serbia. PLOS One. 2018;13(8):e0203064. doi: 10.1371/journal.pone.0203064. 
  21. Zhao XK, Ma S, Liu N, et al. A polysaccharide from Trametes robiniophila murrill induces apoptosis through intrinsic mitochondrial pathway in human osteosarcoma (U-2 OS) cells. Tumour Biol. 2015;36(7):5255-5263. doi: 10.1007/s13277-015-3185-9. 
  22. He NW, Tian LM, Zhai XC, et al. Composition characterization, antioxidant capacities and antiproliferative effects of the polysaccharides isolated from Trametes lactinea (Berk.) Pat. Int J Biol Macromol. 2018;115:114-123. doi: 10.1016/j.ijbiomac.2018.04.049. 
  23. Rashid S, Unyayar A, Mazmanci MA, et al. Potential of a Funalia trogii laccase enzyme as an anticancer agent. Ann Microbiol. 2015;65(1):175-183. doi: 10.1007/s13213-014-0848-5. 
  24. Hleba L, Vukovic N, Petrova J, et al. Antimicrobial activity of crude methanolic extracts from Ganoderma lucidum and Trametes versicolor. Scientific Papers: Anim Sci Biotechnol. 2014;47:89-93. 
  25. Janeꠙs D, Kreft S, Jurc M, et al. Antibacterial activity in higher fungi (mushrooms) and endophytic fungi from Slovenia. Pharm Biol. 2007;45(9):700-706. doi: 10.1080/13880200701575189. 
  26. Aslan A, Akata I, Nal G,et al. H. Phenolic content and biological activities of Trametes hirsuta. Fresenius Environmental Bulletin. 2021;30:4130-4135. 
  27. Stiller JW, Hall BD. The origin of red algae: implications for plastid evolution. Proc Natl Acad Sci U S A. 1997;94(9):4520-4525. doi: 10.1073/pnas.94.9.4520. 
  28. Matheny PB, Liu YJ, Ammirati JF, et al. Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). Am J Bot. 2002;89(4):688-698. doi: 10.3732/ajb.89.4.688. 
  29. Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol. 1999;16(12):1799-1808. doi: 10.1093/oxfordjournals.molbev. a026092. 
  30. Matheny PB. Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). Mol Phylogenet Evol. 2005; 35(1):1-20. doi: 10.1016/j.ympev.2004.11.014. 
  31. Matheny PB, Wang Z, Binder M, et al. Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol Phylogenet Evol. 2007;43(2):430-451. doi: 10.1016/j.ympev.2006.08.024. 
  32. Rehner SA, Buckley E. A Beauveria phylogeny inferred from nuclear ITS and EF1-a sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia. 2005;97(1):84-98.  https://doi.org/10.3852/mycologia.97.1.84
  33. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR Protocols: a guide to methods and applications. 1990. p. 315-322. 
  34. Garcia-Sandoval R, Wang Z, Binder M, et al. Molecular phylogenetics of the gloeophyllales and relative ages of clades of Agaricomycotina producing a brown rot. Mycologia. 2011;103(3):510-524. doi: 10.3852/10-209.