DOI QR코드

DOI QR Code

Acute toxicity assessment of nine organic UV filters using a set of biotests

  • Stec Marcin (Environmental Chemistry Research Unit, Institute of Biology and Earth Sciences, Pomeranian University in Slupsk) ;
  • Astel Aleksander (Environmental Chemistry Research Unit, Institute of Biology and Earth Sciences, Pomeranian University in Slupsk)
  • Received : 2023.02.06
  • Accepted : 2023.05.17
  • Published : 2023.10.15

Abstract

UV filters in environmental compartments are a source of concern related to their ecotoxicological effects. However, little is known about UV filters' toxicity, particularly those released into the environment as mixtures. Acute toxicity of nine organic UV filters benzophenone-1, benzophenone-2, benzophenone-3, 4-methoxy benzylidene camphor, octocrylene, ethylhexyl methoxycinnamate, 2-ethylhexyl salicylate, homosalate, and butyl methoxydibenzoylmethane was determined. UV filter solutions were tested as single, binary, and ternary mixtures of various compositions. Single solutions were tested using a set of bio tests, including tests on saline crustaceans (Artemia franciscana), freshwater crustaceans (Daphnia magna), marine bacteria (Aliivibrio fischeri), and freshwater plants (Lemna minor). The tests represent different stages of the trophic chain, and hence their overall results could be used to risk assessment concerning various water reservoirs. The toxicity of binary and ternary mixtures was analyzed using the standardized Microtox® method. Generally, organic UV filters were classified as acutely toxic. Octocrylene was the most toxic for Arthemia franciscana (LC50=0.55 mg L-1) and Daphnia magna (EC50=2.66-3.67 mg L-1). The most toxic against freshwater plants were homosalate (IC50=1.46 mg L-1) and octocrylene (IC50=1.95 mg L-1). Ethylhexyl methoxycinnamate (EC50=1.38-2.16 mg L-1) was the most toxic for marine bacteria. The least toxic for crustaceans and plants were benzophenone-1 (EC50=6.15-46.78 mg L-1) and benzophenone-2 (EC50=14.15-54.30 mg L-1), while 4-methoxy benzylidene camphor was the least toxic for marine bacteria (EC50=12.97-15.44 mg L-1). Individual species differ in their sensitivity to the tested organic UV filters. An assessment of the toxicity of mixtures indicates high and acute toxicity to marine bacteria after exposition to a binary mixture of benzophenone-2 with octocrylene, 2-ethylhexyl salicylate, or homosalate. The toxicity of mixtures was lower than single solutions predicting antagonistic interaction between chemicals.

Keywords

Acknowledgement

This research was funded by the POMERANIAN UNIVERSITY IN SLUPSK (Grant no 7-4-3).

References

  1. Statista Search Department (2022) Market revenue of the sun protection market worldwide from 2013 to 2026 [Infographic]. https://www.statista.com/forecasts/812522/sun-care-marketvalue-global#statisticContainer
  2. Giokas DL, Salvador A, Chisvert A (2007) UV filters: from sunscreens to human body and the environment. TrAC 26:360-374. https://doi.org/10.1016/j.trac.2007.02.012
  3. Sanchez-Quiles D, Tovar-Sanchez A (2015) Are sunscreens a new environmental risk associated with coastal tourism? Environ Int 83:158-170. https://doi.org/10.1016/j.envint.2015.06.007
  4. Labille J, Slomberg D, Catalano R, Robert S, Apres-Termelo ML, Boudenne JL, Manasf T, Radakovitch O (2020) Assessing UV filter inputs into beach waters during recreational activity: a field study of three French Mediterranean beaches from consumer survey to water analysis. Sci Total Environ 706:136010. https://doi.org/10.1016/j.scitotenv.2019.136010
  5. Danovaro R, Bongiorni L, Corinaldesi C, Giovannelli D, Damiani E, Astolfi P, Greci L, Pusceddu A (2008) Sunscreens cause coral bleaching by promoting viral infections. Environ Health Perspect 116:441-447. https://doi.org/10.1289/ehp.10966
  6. Esbenshade JL, Cardoso JC, Zanoni MVB (2010) Removal of sunscreen compounds from swimming pool water using self-organized TiO2 nanotubular array electrodes. J Photochem Photobiol A 214(2-3):257-263. https://doi.org/10.1016/j.jphotochem.2010.07.005
  7. Ramos S, Homem V, Alves A, Santos L (2016) A review of organic UV filters in wastewater treatment plants. EnvironInt 86:24-44. https://doi.org/10.1016/j.envint.2015.10.004
  8. Mao F, He Y, Gin K (2018) Occurrence and fate of benzophenone-type UV filters in aquatic environments: A review. Environ Sci Water Res Technol 5:209-222. https://doi.org/10.1039/C8EW00539G
  9. Sirois J (2021) Environmental Effects of Ultraviolet (UV) Filters. Curr Probl Dermatol 55:236-258. https://doi.org/10.1159/000517635
  10. Poiger T, Buser HR, Balmer ME, Bergqvist PA, Muller MD (2004) Occurrence of UV filter compounds from sunscreens in surface waters: regional mass balance in two Swiss lakes. Chemosphere 55:951-963. https://doi.org/10.1016/j.chemosphere.2004.01.012
  11. Rodil R, Schrader S, Moeder M (2009) Non-porous membrane-assisted liquid-liquid extraction of UV filter compounds from water samples. J Chromatogr A 1216:4887-4894. https://doi.org/10.1016/j.chroma.2009.04.042
  12. Ekpeghere KI, Kim UJ, Sung-Hee O, Kim HY, Oh JE (2016) Distribution and seasonal occurrence of UV filters in rivers and wastewater treatment plants in Korea. Sci Total Environ 542:121-128. https://doi.org/10.1016/j.scitotenv.2015.10.033
  13. Fagervold SK, Rodrigues AS, Rohee C, Roe R, Bourrain M, Stien D, Lebaron P (2019) Occurrence and environmental distribution of 5 UV filters during the summer season in different water bodies. Wat Air Soil Poll 230:172. https://doi.org/10.1007/s11270-019-4217-7
  14. Hu LX, Cheng YX, Wu D, Fan L, Zhao JH, Xiong Q, Le Quan Ch, You-Sheng L, Ying GG (2021) Continuous input of organic ultraviolet filters and benzothiazoles threatens the surface water and sediment of two major rivers in the Pearl River Basin. Sci Total Environ 798:149299. https://doi.org/10.1016/j.scitotenv.2021.149299
  15. Tovar-Sanchez A, Sanchez-Quiles D, Basterretxea G, Benede JL, Chisvert A, Salvador A, Moreno-Garrido I, Blasco J (2013) Sunscreen products as emerging pollutants to coastal waters. PLoS One 8:e65451. https://doi.org/10.1371/journal.pone.0065451
  16. Tsui MMP, Leung HW, Wai TCh, Yamashita N, Taniyasu S, Li W, Lam PKS, Murphy MB (2014) Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surface waters from different countries. Water Res 67:55-65. https://doi.org/10.1016/j.watres.2014.09.013
  17. Sanchez Rodriguez A, Rodrigo Sanz M, Betancort Rodriguez JR (2015) Occurrence of eight UV filters in beaches of Gran Canaria (Canary Islands). An approach to environmental risk assessment. Chemosphere 131:85-90. https://doi.org/10.1016/j.chemosphere.2015.02.054
  18. St S, Klein D, Morse AN (2016) UV filters are an environmental threat in the Gulf of Mexico: a case study of Texas coastal zones. Oceanology 58:327-335. https://doi.org/10.1016/j.oceano.2016.07.002
  19. Mitchelmore CL, He K, Gonsior M, Hain E, Heyes A, Clark C, Younger R, Schmitt-Kopplin P, Feerick A, Conway A, Blaney L (2019) Occurrence and distribution of UV filters and other anthropogenic contaminants in coastal surface water, sediment, and coral tissue from Hawaii. Sci Total Environ 670:398-410. https://doi.org/10.1016/j.scitotenv.2019.03.034
  20. Cadena-Aizaga MI, Montesdeoca-Esponda S, Torres-Padron ME, Sosa-Ferrera Z, Santana-Rodriguez JJ (2019) Organic UV filters in marine environments: an update of analytical methodologies, occurrence and distribution. Trends Environ Anal Chem 25:e00079. https://doi.org/10.1016/j.teac.2019.e00079
  21. Astel A, Stec M, Rykowska I (2020) Occurrence and distribution of UV filters in beach sediments of the Southern Baltic Sea Coast. Water 12:3024. https://doi.org/10.3390/w12113024
  22. Tarazona I, Chisvert A, Salvador A (2014) Development of a gas chromatography-mass spectrometry method for the determination of ultraviolet filters in beach sand samples. Anal Methods 6:7772-7780. https://doi.org/10.1039/C4AY01403K
  23. Benede JL, Chisvert A, Moyano C, Giokas DL (2018) Expanding the application of stir bar sorptive-dispersive microextraction approach to solid matrices: determination of ultraviolet filters in coastal sand samples. J Chromatogr A 1564:25-33. https://doi.org/10.1016/j.chroma.2018.06.003
  24. Kameda Y, Kimura K, Miyazaki M (2011) Occurrence and profiles of organic sun-blocking agents in surface waters and sediments in Japanese rivers and lakes. Environ Pollut 159:1570-1576. https://doi.org/10.1016/j.envpol.2011.02.055
  25. Apel C, Joerss H, Ebinghaus R (2018) Environmental occurrence and hazard of organic UV stabilizers and UV filters in the sediment of European North and Baltic Sea. Chemosphere 212:254-261. https://doi.org/10.1016/j.chemosphere.2018.08.105
  26. Bargar TA, Alvarez DA, Garrison VH (2015) Synthetic ultraviolet light filtering chemical contamination of coastal waters of Virgin Islands National Park, St. John U.S. Virgin Islands. Mar Pollut Bull 101:193-199. https://doi.org/10.1016/j.marpolbul.2015.10.077
  27. D'Amicoa M, Gambaro A, Barbante C, Barbaro E, Caiazzo L, Vecchiato M (2022) Occurrence of the UV filter 2-Ethylhexyl 4-methoxycinnimate (EHMC) in Antarctic snow: first results. Microchem J 183:108060. https://doi.org/10.1016/j.microc.2022.108060
  28. Diaz-Cruz MS, Barcelo D (2009) Chemical analysis and ecotoxicological effects of organic UV-absorbing compounds in aquatic ecosystems. TrAC 28:708-717. https://doi.org/10.1016/j.trac.2009.03.010
  29. Gago-Ferrero P, Diaz-Cruz MS, Barcelo D (2012) An overview of UV-absorbing compounds (organic UV filters) in aquatic biota. Anal Bioanal Chem 404:2597-2610. https://doi.org/10.1007/s00216-012-6067-7
  30. Pawlowski S, Herzog B, Sohn M, Petersen-Thiery M, Acker S (2021) EcoSun Pass: A tool to evaluate the ecofriendliness of UV filters used in sunscreen products. Int J Cosmet Sci 43:201-210. https://doi.org/10.1111/ics.12681
  31. Chatzigianni M, Pavlou P, Siamidi A, Vlachou M, Varvaresou A, Papageorgiou S (2022) Environmental impacts due to the use of sunscreen products: a mini-review. Ecotoxicology 31:1331-1345. https://doi.org/10.1007/s10646-022-02592-w
  32. Bachelot M, Li Z, Munaron D, Le Gall P, Casellas C, Fenet H, Gomez E (2012) Organic UV filter concentrations in marine mussels from French coastal regions. Sci Total Environ 420:273-279. https://doi.org/10.1016/j.scitotenv.2011.12.051
  33. Langford KH, Reid MJ, Fjeld E, Oxnevad S, Thomas KV (2015) Environmental occurrence and risk of organic UV filters and stabilizers in multiple matrices in Norway. Environ Int 80:1-7. https://doi.org/10.1016/j.envint.2015.03.012
  34. Gago-Ferrero P, Diaz-Cruz MS, Barcelo D (2015) UV filters bioaccumulation in fish from Iberian river basins. Sci Total Environ 518-519:518-525. https://doi.org/10.1016/j.scitotenv.2015.03.026
  35. Gimeno-Monforte S, Montesdeoca-Esponda S, Sosa-Ferrera Z, Santana-Rodriguez JJ, Castro O, Pocurull E, Borrull F (2020) Multiresidue analysis of organic UV filters and UV stabilizers in fish of common consumption. Foods 9:1827. https://doi.org/10.3390/foods9121827
  36. Gago-Ferrero P, Alonso MP, Bertozzi CP, Marigo J, Barbosa L, Cremer M, Secchi ER, Domit C, Azevedo A, Lailson-Brito J, Torres JPM, Malm O, Eljarrat E, Diaz-Cruz MSD, Barcelo D (2013) First determination of UV filters in marine mammals. Octocrylene levels in Franciscana dolphins. Sci Total Environ 47:5619-5625. https://doi.org/10.1021/es400675y
  37. Fent K, Zenker A, Rapp M (2010) Widespread occurrence of estrogenic UV filters in aquatic ecosystems in Switzerland. Environ Poll 158:1817-1824. https://doi.org/10.1016/j.envpol.2009.11.005
  38. Lozano C, Matallana-Surget S, Givens J, Nouet S, Arbuckle L, Lambert Z, Lebaron P (2020) Toxicity of UV filters on marine bacteria: Combined effects with damaging solar radiation. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.1378
  39. Sieratowicz A, Kaiser D, Behr M, Oetken M, Oehlmann J (2011) Acute and chronic toxicity of four frequently used UV filter substances for Desmodes mussubspicatus and Daphnia magna. J Environ Sci Health 46:1311-1319. https://doi.org/10.1080/10934529.2011.602936
  40. Mao F, He Y, Kushmaro A, Gin KYH (2017) Effects of benzophenone-3 on the green alga Chlamydomonas Reinhardtii and the Cyanobacterium Microcystis Aeruginosa. AquatToxicol 193:1-8. https://doi.org/10.1016/j.aquatox.2017.09.029
  41. Thorel E, Clergeaud F, Jaugeon L, Rodrigues AMS, Lucas J, Stien D, Lebaron P (2020) Effect of 10 UV Filters on the brine shrimp Artemia salina and the marine microalga Tetraselmis sp. Toxics 8:29. https://doi.org/10.3390/toxics8020029
  42. Corinaldesi C, Marcellini F, Nepote E, Damiani E, Danovaro R (2018) Impact of inorganic UV filters contained in sunscreen products on tropical stony corals (Acropora spp.). Sci Total Environ 37-638:1279-1285. https://doi.org/10.1016/j.scitotenv.2018.05.108
  43. Conway AJ, Gonsior M, Clark C, Heyes A, Mitchelmore CL (2021) Acute toxicity of the UV filter oxybenzone to the coral Galaxea fascicularis. Sci Total Environ 796:148666. https://doi.org/10.1016/j.scitotenv.2021.148666
  44. Park CB, Jang J, Kim S, Kim YJ (2017) Single- and mixture toxicity of three organic UV filters, ethylhexyl methoxycinnamate, octocrylene and avobenzone on Daphnia magna. Ecotoxicol Environ Saf 137:57-63. https://doi.org/10.1016/j.ecoenv.2016.11.017
  45. Kunz PY, Fent K (2006) Estrogenic activity of UV filter mixtures. Toxicol Appl Pharmacol 217:86-99. https://doi.org/10.1016/j.taap.2006.07.014
  46. Araujo MJ, Rocha RJM, Soares AMVM, Benede JL, Chisvert A, Monteiro MS (2018) Effects of UV filter 4-methylbenzylidene camphor during early development of Solea senegalensis Kaup, 1858. Sci Total Environ 628-629:1395-1404. https://doi.org/10.1016/j.scitotenv.2018.02.112
  47. Cahova J, Blahova J, Plhalova L, Svobodova Z, Faggio C (2021) Single-component and mixtures selected organic uv filters induce embryotoxic effects in zebrafish (Danio rerio)? Water 13:2203. https://doi.org/10.3390/w13162203
  48. Carvalhais A, Pereira B, Sabato M, Seixas R, Dolbeth M, Marques M, Guilherme S, Pereira P, Pacheco M, Mieiro C (2021) Mild effects of sunscreen agents on a marine flatfish: oxidative stress, energetic profiles, neurotoxicity and behaviour in response to titanium dioxide nanoparticles and oxybenzone. Int J Mol Sci 22:1567. https://doi.org/10.3390/ijms22041567
  49. Mao F, He Y, Gin KYH (2018) Evaluating the joint toxicity of two benzophenone-type UV filters on the green alga Chlamydomonas reinhardtii with response surface methodology. Toxics 6:8. https://doi.org/10.3390/toxics6010008
  50. Douglas AE (2003) Coral bleaching-how and why? Mar Poll Bull 46:38. https://doi.org/10.1016/S0025-326X(03)00037-7
  51. Downs CA, Kramarsky-Winter E, Segal R, Fauth J, Knutson S, Bronstein O, Ciner FR, Jeger R, Lichtenfeld Y, Woodley CM, Pennington P, Cadenas K, Kushmaro A, Loya Y (2016) Toxicopathological effects of the sunscreen UV Filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the U.S. virgin islands. Arch Environ Contam Toxicol 70:265-288. https://doi.org/10.1007/s00244-015-0227-7
  52. Sharifan H (2020) Alarming the impacts of the organic and inorganic UV blockers on endangered coral's species in the Persian gulf: a scientific concern for coral protection. Sustain Futur 2:100017. https://doi.org/10.1016/j.sftr.2020.100017
  53. Bluthgen N, Meili N, Chew G, Odermatt A, Fent K (2014) Accumulation and effects of the UV filter octocrylene in adult and embryonic zebrafish (Danio rerio). Sci Total Environ 476-477:207-217. https://doi.org/10.1016/j.scitotenv.2014.01.015
  54. Kunz PY, Gries T, Fent K (2006) The ultraviolet filter 3-benzylidene camphor adversely affects reproduction in fathead minnow (Pimephalespromelas). Toxicol Sci 93:311-321. https://doi.org/10.1093/toxsci/kf070
  55. Weisbrod CJ, Kunz PY, Zenker AK, Fent K (2007) Effects of the UV filter benzophenone-2 on reproduction in fish. Toxicol Appl Pharmacol 225:255-266. https://doi.org/10.1016/j.taap.2007.08.004
  56. Fent K, Kunz PY, Gomez E (2008) UV filters in the aquatic environment induce hormonal effects and affect fertility and reproduction in Fish. Chimia 62:368-375. https://doi.org/10.2533/chimia.2008.368
  57. Kim S, Jung D, Kho Y, Choi K (2014) Effects of benzophenone-3 exposure on endocrine disruption and reproduction of Japanese medaka (Oryzias latipes)-a two generation exposure study. Aquat Toxicol 155:244-252. https://doi.org/10.1016/j.aquatox.2014.07.004
  58. Schlumpf M, Kypke K, Vokt CC, Birchler M, Durrer S, Faass O, Ehnes C, Fuetsch M, Gaille C, Henseler M, Hofkamp L, Maerkel K, Reolon S, Zenker A, Timms B, Tresguerres JAF, Lichtensteiger W (2008) Endocrine active UV filters: developmental toxicity and exposure through breast milk. Chimia 62:345-351. https://doi.org/10.2533/chimia.2008.345
  59. Kunz PY, Galicia HF, Fent K (2006) Comparison of in vitro and in vivo estrogenic activity of UV filters in fish. Toxicol Sci 90:349-361. https://doi.org/10.1093/toxsci/kf082
  60. Coronado M, De Haro H, Deng X, Rempel MA, Lavado R, Schlenk D (2008) Estrogenic activity and reproductive effects of the UV filter oxybenzone (2-hydroxy-4-methoxyphenylmethanone) in fish. Aquat Toxicol 90:182-187. https://doi.org/10.1016/j.aquatox.2008.08.018
  61. Kunz PY, Fent K (2009) Estrogenic activity of ternary UV filter mixtures in fsh (Pimephales promelas) - An analysis with nonlinear isobologram. Toxicol Appl Pharmaacol 234:77-88. https://doi.org/10.1016/j.taap.2008.09.032
  62. Kahru A, Dubourguier HC, Blinova I, Ivask A, Kasemets K (2008) Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: a minireview. Sensors 8:5153-5170. https://doi.org/10.3390/s8085153
  63. Martinez-Haro M, Beiras R, Bellas J, Capela R, Coelho JP, Lopes I, Moreira-Santos M, Reis-Henriques AM, Ribeiro R, Santos MM, Marques JC (2015) A review on the ecological quality status assessment in aquatic systems using community based indicators and ecotoxicological tools: what might be the added value of their combination? Ecol Indic 48:8-16. https://doi.org/10.1016/j.ecolind.2014.07.024
  64. Wieczerzak M, Namiesnik J, Kudlak B (2016) Bioassays as one of the Green Chemistry tools for assessing environmental quality: a review. Environ Int 94:341-361. https://doi.org/10.1016/j.envint.2016.05.017
  65. Annex VI to the EU Cosmetics Regulation (2022) List of UV filters allowed in cosmetic products. https://ec.europa.eu/growth/tools-databases/cosing/pdf/COSING_Annex%20VI_v2.pdf. Accessed 28 Dec 2022
  66. Fent K, Kunz PY, Zenker A, Rapp M (2010) A tentative environmental risk assessment of the UV filters 3-(4-methylbenzylidene-camphor), 2-ethyl-hexyl-4-trimethoxycinnamate, benzophenone-3, benzophenone-4 and 3-benzylidene camphor. Mar Environ Res 69:4-6. https://doi.org/10.1016/j.marenvres.2009.10.010
  67. Boyd A, Stewart CB, Philibert DA, How ZT, El-Din MG, Tierney KB, Blewett TA, (2020) A burning issue: The effect of organic ultraviolet filter exposure on the behaviour and physiology of Daphnia magna. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.1417
  68. de Paula VDCS, Gomes MF, Martins LRR, Yamamoto FY, de Freitas AM (2022) Acute toxicity characterization of organic UV filters and chronic exposure revealing multigenerational effects in Daphnia magna. Ecotoxicology 31:1413-1425. https://doi.org/10.1007/s10646-022-02598-4
  69. de Miranda LLR, Harvey KE, Ahmed A, Harvey SC (2021) UV filter pollution: current concerns and future prospects. Environ Monit Assess 193:840. https://doi.org/10.1007/s10661-021-09626-6
  70. Balmer ME, Buser HR, Muller MD, Poiger T (2005) Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from swiss lakes. Environ Sci Technol 39:953-962. https://doi.org/10.1021/es040055r
  71. Molins-Delgado D, Gago-Ferrero P, Diaz-Cruz MS, Barcelo D (2016) Single and joint ecotoxicity data estimation of organic UV filters and nanomaterials toward selected aquatic organisms. Urban groundwater risk assessment. Environ Res 145:126-134. https://doi.org/10.1016/j.envres.2015.11.026
  72. Wnuk W, Michalska K, Krupa A, Pawlak K (2022) Benzophenone-3, a chemical UV filter in cosmetics: is it really safe for children and pregnant women? Adv Dermatol Allergol 39:26-33. https://doi.org/10.5114/ada.2022.113617
  73. Nalecz-Jawecki G, Wieladek A, Siedlecka E (2008) Evaluation of ecotoxicity of selected sunscreens. Ecotoxicology in Environmental Protection 243-248. http://www.pzits.not.pl/docs/ksiazki/Ekotoks_2008/Nalecz-Jawecki%20243-248.pdf (in Polish)
  74. Sanches VM, Oliva M, De Marchi L, Cuccaro A, Puppi D, Chiellini F, Freitas R, Pretti C (2021) Ecotoxicological screening of UV filters using a battery of marine bioassays. Environ Poll 290:118011. https://doi.org/10.1016/j.envpol.2021.118011
  75. Liu H, Sun P, Liu H, Yang S, Wang L, Wang Z (2015) Acute toxicity of benzophenone-type UV filters for Photobacterium phosphoreum and Daphnia magna: QSAR analysis, interspecies relationship and integrated assessment. Chemosphere 135:182-188. https://doi.org/10.1016/j.chemosphere.2015.04.036
  76. ISO 11348-3 (2019) Water quality-determination of the inhibitory effect of water samples on the light emission of Vibriofischeri (Luminescent bacteria test)-part 3: method using freeze-dried bacteria
  77. Zhang Q, Ma X, Dzakpasu M, Wang XC (2017) Evaluation of ecotoxicological effects of benzophenone UV filters: Luminescent bacteria toxicity, genotoxicity and hormonal activity. Ecotoxicol Environ Saf 142:338-347. https://doi.org/10.1016/j.ecoenv.2017.04.027
  78. Gackowska A, Studzinski W, Kudlek E, Dudziak M, Gaca J (2018) Estimation of physicochemical properties of 2-ethylhexyl-4-methoxycinnamate (EHMC) degradation products and their toxicological evaluation. Environ Sci Pollut Res 25:16037-16049. https://doi.org/10.1007/s11356-018-1796-6
  79. ASTM International - ASTM E1440-91 (2012) Standard guide for acute toxicity test with the rotifer Brachionus (Withdrawn 2021)
  80. OECD Guideline for testing of chemicals, Daphnia sp., acute immobilisation Test, 202 sp. (2004). https://doi.org/10.1787/9789264069947-en
  81. Kudlek EA, Dudziak M (2017) The influence of selected organic micropollutants on water ecosystems. Ecol Eng 18:83-90. https://doi.org/10.12912/23920629/70261
  82. Bialk-Bielinska A, Grabarczyk L, Mulkiewicz E, Puckowski A, Stolte S, Stepnowski P (2022) Mixture toxicity of six pharmaceuticals towards Aliivibrio fischeri, Daphnia magna and Lemna minor. Environ Sci Pollut Res Int 29:26977-26991. https://doi.org/10.1007/s11356-021-17928-y
  83. OECD Guideline for testing of chemicals, Lemna sp. Growth Inhibition Test, 221 (2006).OECD 221 (2006). https://doi.org/10.1787/9789264016194-en
  84. Parvez S, Venkataraman C, Mukherji S (2006) A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ Int 32:265-268. https://doi.org/10.1016/j.envint.2005.08.022
  85. Teodorovic I, Planojevic I, Knezevic P, Radak S, Nemet I (2009) Sensitivity of bacterial vs. acute Daphnia magna toxicity tests to metals. Cent Eur J Biol 4:482-492. https://doi.org/10.2478/s11535-009-0048-7
  86. Environmental Technology Verification Report. Strategic diagnostics inc. Microtox® rapid toxicity testing system (2003) Environmental Protection Agency. https://archive.epa.gov/nrmrl/archive-etv/web/pdf/01_vr_microtox.pdf. Accessed 12 Apr 2023
  87. Ozaez I, Morcillo G, Martinez-Guitarte JL (2016) The effects of binary UV filter mixtures on the midge Chironomus riparius. Sci Total Environ 556:154-162. https://doi.org/10.1016/j.scitotenv.2016.02.210
  88. Gavrila AA, Dasteridis IS, Tzimas AA, Chatzimitakos TG, Stalikas CD (2023) Benzophenones in the environment: occurrence, fate and sample preparation in the analysis. Molecules 28:1229. https://doi.org/10.3390/molecules28031229
  89. Pearson ES (1938) Mathematical statistics and data analysis, 2nd edn. Duxbury, Belmont
  90. Schrek R (1942) Logarithmic correlation coefficients and regression equations. Human Biol 14(1):95
  91. Persoone G, Marsalek B, Blinova I, Torokne A, Zarina D, Manusadzianas L, Nalecz-Jawecki G, Tofan L, Stepanova N, Tothova L, Kolar B (2003) A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environ Toxicol 18:395-402. https://doi.org/10.1002/tox.10141
  92. Makridis P (1999) Food size selectivity of Artemia franciscana at three developmental stages. J Plankton Res 21:2191-2201. https://doi.org/10.1093/plankt/21.11.2191
  93. Fereidouni AE, Fathi N, Khalesi MK (2013) Enrichment of Daphnia magna with canola oil and its effects on the growth, survival and stress resistance of the Caspian Kutum (Rutilus frisii kutum) Larvae. Turk J Fish Aquat Sc 13:119-126. https://doi.org/10.4194/1303-2712-v13_1_15
  94. Mayer P, Reichenberg F (2006) Can highly hydrophobic organic substances cause aquatic baseline toxicity and can they contribute to mixture toxicity? Environ Toxicol Chem 25:2639. https://doi.org/10.1897/06-142r.1
  95. Medici A, Saviano L, Siciliano A, Libralato G, Guida M, Previtera L, Di Fabio G, Zarrelli A (2022) Octocrylene: from sunscreens to the degradation pathway during chlorination processes: formation of byproducts and their ecotoxicity assessment. Molecules 27:5286. https://doi.org/10.3390/molecules27165286
  96. Guilhermino L, Celeste Lopes M, Carvalho AP, Soares AM (1996) Inhibition of acetylcholinesterase activity as effect criterion in acute tests with juvenile Daphnia magna. Chemosphere 32:727-738. https://doi.org/10.1016/0045-6535(95)00360-6
  97. Sandoval-Gio JJ, Norena-Barroso E, Escalante-Herrera K, Rodriguez-Fuentes G (2021) Effect of benzophenone-3 to acetylcholinesterase and antioxidant system in zebrafish (Danio rerio) embryos. Bull Environ Contam Toxicol 107:814-819. https://doi.org/10.1007/s00128-021-03277-6
  98. Li VWT, Tsui MPM, Chen X, Hui MNY, Jin L, Lam RHW, Yu RMK, Murphy MB, Cheng J, Lam PKS, Cheng SH (2016) Effects of 4-methylbenzylidene camphor (4-MBC) on neuronal and muscular development in zebrafish (Danio rerio) embryos. Environ Sci Pollut Res 23:8275-8285. https://doi.org/10.1007/s11356-016-6180-9
  99. Liu Y, Wang Y, Li N, Jiang S (2022) Avobenzone and nanoplastics affect the development of zebrafish nervous system and retinal system and inhibit their locomotor behavior. Sci Total Environ 806:150681. https://doi.org/10.1016/j.scitotenv.2021.150681
  100. Dojmi Di Delupis G, Rotondo V (1988) Phototaxis in aquatic invertebrates: Possible use in ecotoxicity test. Ecotoxicol Environ Saf 16:189-193. https://doi.org/10.1016/0147-6513(88)90049-8
  101. Zhong X, Downs CA, Li Y, Zhang Z, Li Y, Liu B, Huiyuan G, Li Q (2020) Comparison of toxicological effects of oxybenzone, avobenzone, octocrylene, and octinoxate sunscreen ingredients on cucumber plants (Cucumis sativus L.). Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.136879
  102. Du Y, Wang WQ, Pei ZT, Ahmad F, Xu RR, Zhang YM, Sun LW (2017) Acute toxicity and ecological risk assessment of benzophenone-3 (BP-3) and benzophenone-4 (BP-4) in ultraviolet (UV)-filters. Int J Environ Res Public Health 14:1414. https://doi.org/10.3390/ijerph14111414
  103. Han J, Qin Z, Zhang J, Wang QW, Wu JY, Lu YZ, Sun LW (2021) Acute toxicity and ecological risk assessment of 4,4'-dihydroxybenzophenone, 2,4,4'-trihydroxybenzophenone and 4-MBC in ultraviolet (UV)-filters. PLoS One 16:e0249915. https://doi.org/10.1371/journal.pone.0249915
  104. Kudlak B, Jatkowska N, Liu W, Williams MJ, Barcelo D, Schioth HB (2022) Enhanced toxicity of bisphenols together with UV filters in water: identification of synergy and antagonism in three-component mixtures. Molecules 27:3260. https://doi.org/10.3390/molecules27103260
  105. Jang GH, Park CB, Kang BJ, Kim YJ, Lee KH (2016) Sequential assessment via daphnia and zebrafish for systematic toxicity screening of heterogeneous substances. Environ Poll 216:292-303. https://doi.org/10.1016/j.envpol.2016.06.001
  106. Zhang J, Pei ZT, Zhao YN, Zhang M, Zhang LL, Wang WQ, Wu JY, Yu R, Sun LW (2021) Mutagenicity evaluation to UV filters of benzophenone-6, benzophenone-8, and 4-methylbenzylidene camphor by Ames test. PLoS One 16:e0255504. https://doi.org/10.1371/journal.pone.0255504
  107. Jeon HK, Chung Y, Ryu JC (2006) Simultaneous determination of benzophenone-type UV filters in water and soil by gas chromatography-mass camphor by Ames test. PLoS ONE 16:e0255504. https://doi.org/10.1371/journal.pone.0255504