Acknowledgement
This study is supported by the National Research Foundation of Korea (NRF) funded by the Korean government (Ministry of Science & ICT) [Grant Number: 2017R1A5A1014883] through Smart Submerged Floating Tunnel System Research Center.
References
- Awaja, F., Zhang, S., Tripathi, M., Nikiforov, A. and Pugno, N. (2016), "Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair", Prog. Mater. Sci., 83, 536-573. https://doi.org/10.1016/j.pmatsci.2016.07.007
- Bagheri, R. and Pearson, R.A. (2000), "Role of particle cavitation in rubber-toughened epoxies: II. Inter-particle distance", Polymer (Guildf)., 41(1), 269-276. https://doi.org/10.1016/S0032-3861(99)00126-3
- Barbero, E.J., Greco, F. and Lonetti, P. (2005), "Continuum Damage-Healing Mechanics with application to self-healing composites", Int. J. Damage Mech., 14(1), 51-81. https://doi.org/10.1177/1056789505045928
- Bian, P.L., Liu, T.L., Qing, H. and Gao, C.F. (2018), "2D micromechanical modeling and simulation of Ta-particles reinforced bulk metallic glass matrix composite", Appl. Sci., 10(11). https://doi.org/10.3390/app8112192
- Blaiszik, B.J., Kramer, S.L.B., Olugebefola, S.C., Moore, J.S., Sottos, N.R. and White, S.R. (2010), "Self-healing polymers and composites", Annu. Rev. Mater. Res., 40, 179-211. https://doi.org/10.1146/annurev-matsci-070909-104532
- Brown, E.N. (2011), "Use of the tapered double-cantilever beam geometry for fracture toughness measurements and its application to the quantification of self-healing", J. Strain Anal. Eng. Des., 46(3), 167-186. https://doi.org/10.1177/0309324710396018
- Brown, E.N., Sottos, N.R. and White, S.R. (2002), "Fracture testing of a self-healing polymer composite", Exp. Mech., 42(4), 372-379. https://doi.org/10.1007/bf02412141
- Brown, E.N., Moore, J.S., White, S.R. and Sottos, N.R. (2003), "Fracture and fatigue behavior of a self-healing polymer composite", Mater. Res. Soc. Symp. - Proc., 735(January), 101-106. https://doi.org/10.1557/proc-735-c11.22
- Brown, E.N., White, S.R. and Sottos, N.R. (2004), "Microcapsule induced toughening in a self-healing polymer composite", J. Mater. Sci., 39(5), 1703-1710. https://doi.org/10.1023/B:JMSC.0000016173.73733.dc
- Brown, E.N., White, S.R. and Sottos, N.R. (2005), "Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite - Part II: In situ self-healing", Compos. Sci. Technol., 65(15-16 SPEC. ISS.), 2474-2480. https://doi.org/10.1016/j.compscitech.2005.04.053
- Chandrasekhar, S. (1943), "Stochastic problems in physics and astronomy", In: Reviews of Modern Physics (Vol. 15, Issue 1, pp. 1-89). https://doi.org/10.1103/RevModPhys.15.1
- Chen, T., Fang, L., Li, X., Gao, D., Lu, C. and Xu, Z. (2020), "Self-healing polymer coatings of polyurea-urethane/epoxy blends with reversible and dynamic bonds", Prog. Org. Coatings, 147, 105876. https://doi.org/10.1016/J.PORGCOAT.2020.105876
- Davies, R. and Jefferson, A. (2017), "Micromechanical modelling of self-healing cementitious materials", Int. J. Solids Struct., 113-114, 180-191. https://doi.org/10.1016/j.ijsolstr.2017.02.008
- Faravelli, L. and Marzi, A. (2010), "Coupling shape-memory alloy and embedded informatics toward a metallic self-healing material", Smart Struct. Syst., Int. J., 6(9), 1041-1056. https://doi.org/10.12989/sss.2010.6.9.1041
- Fifo, O., Ryan, K. and Basu, B. (2015), "Application of self-healing technique to fibre reinforced polymer wind turbine blade", Smart Struct. Syst., Int. J., 16(4), 593-606. https://doi.org/10.12989/sss.2015.16.4.593
- Gamstedt, E.K. and Talreja, R. (1999), "Fatigue damage mechanisms in unidirectional carbon-fibre-reinforced plastics", J. Mater. Sci., 34(11), 2535-2546. https://doi.org/10.1023/A:1004684228765
- Gao, C., Ruan, H., Yang, C. and Wang, F. (2021), "Investigation on microcapsule self-healing mechanism of polymer matrix composites based on numerical simulation", Polym. Compos., 42(7), 3619-3631. https://doi.org/10.1002/pc.26083
- Garoz Gomez, D., Gilabert, F.A., Tsangouri, E., Van Hemelrijck, D., Hillewaere, X.K.D., Du Prez, F.E. and Van Paepegem, W. (2015), "In-depth numerical analysis of the TDCB specimen for characterization of self-healing polymers", Int. J. Solids Struct., 64, 145-154. https://doi.org/10.1016/j.ijsolstr.2015.03.020
- Grellmann, W. and Langer, B. (2010), "Deformation and Fracture Behaviour of Polymer Materials", In: Springer Series in Materials Science (Vol. 70, Issue 4).
- Huseien, G.F., Nehdi, M.L., Faridmehr, I., Ghoshal, S.K., Hamzah, H.K., Benjeddou, O. and Alrshoudi, F. (2022), "Smart bioagents-activated sustainable self-healing cementitious materials: An all-inclusive overview on progress, benefits and challenges", Sustain., 14(4), p. 1980. https://doi.org/10.3390/su14041980
- Jang, D., Yoon, H.N., Nam, I.W. and Lee, H.K. (2020), "Effect of carbonyl iron powder incorporation on the piezoresistive sensing characteristics of CNT-based polymeric sensor", Compos. Struct., 244, 112260. https://doi.org/10.1016/J.COMPSTRUCT.2020.112260
- Jang, D., Yoon, H.N., Seo, J., Park, S., Kil, T. and Lee, H.K. (2021), "Improved electric heating characteristics of CNT-embedded polymeric composites with an addition of silica aerogel", Compos. Sci. Technol., 212, 108866. https://doi.org/10.1016/J.COMPSCITECH.2021.108866
- Ju, J.W. and Chen, T.M. (1994), "Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities", Acta Mech., 103(1-4), 103-121. https://doi.org/10.1007/BF01180221
- Ju, J.W. and Sun, L.Z. (2001), "Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities. Part I: Micromechanics-based formulation", Int. J. Solids Struct., 38(2), 183-201. https://doi.org/10.1016/S0020-7683(00)00023-8
- Jud, K. and Kausch, H.H. (1979), "Load transfer through chain molecules after interpenetration at interfaces", Polym. Bull., 1(10), 697-707. https://doi.org/10.1007/BF00255445
- Karihaloo, B. and Fu, D. (1989), "A damage-based constitutive law for plain concrete in tension", Eur. J. Mech. A-Solids, 8, 373-384.
- Keller, M.W. and Sottos, N.R. (2006), "Mechanical properties of microcapsules used in a self-healing polymer", Exp. Mech., 46(6), 725-733. https://doi.org/10.1007/s11340-006-9659-3
- Khalid, H.R., Choudhry, I., Jang, D., Abbas, N., Salman Haider, M. and Lee, H.K. (2021), "Facile synthesis of sprayed CNTs layer-embedded stretchable sensors with controllable sensitivity", Polymers (Basel)., 13(2), 1-7. https://doi.org/10.3390/POLYM13020311
- Kil, T., Jin, D.W., Yang, B. and Lee, H.K. (2021), "A comprehensive micromechanical and experimental study of the electrical conductivity of polymeric composites incorporating carbon nanotube and carbon fiber", Compos. Struct., 268, 114002. https://doi.org/10.1016/J.COMPSTRUCT.2021.114002
- Kil, T., Jin, D.W., Yang, B. and Lee, H.K. (2022), "A combined experimental and micromechanical approach to investigating PTC and NTC effects in CNT-polypropylene composites under a self-heating condition", Compos. Struct., 289, 115440. https://doi.org/10.1016/J.COMPSTRUCT.2022.115440
- Kil, T., Bae, J.H., Yang, B. and Lee, H.K. (2023), "Multi-level micromechanics-based homogenization for the prediction of damage behavior of multiscale fiber-reinforced composites", Compos. Struct., 303, 116332. https://doi.org/10.1016/J.COMPSTRUCT.2022.116332
- Kim, J.S., Nam, I.W. and Lee, H.K. (2020), "Piezoelectric characteristics of urethane composites incorporating piezoelectric nanomaterials", Compos. Struct., 241, 112072. https://doi.org/10.1016/j.compstruct.2020.112072
- Lee, H.K. and Pyo, S.H. (2009), "3D-Damage Model for Fiber-Reinforced Brittle Composites with Microcracks and Imperfect Interfaces", J. Eng. Mech., 135(10), 1108-1118. https://doi.org/10.1061/(asce)em.1943-7889.0000039
- Lee, J.Y., Buxton, G.A. and Balazs, A.C. (2004), "Using nanoparticles to create self-healing composites", J. Chem. Phys., 121(11), 5531-5540. https://doi.org/10.1063/1.1784432
- Lin, J., Chen, H., Lv, Z. and Wang, Y. (2018), "Analytical solution on dosage of self-healing capsules in materials with two-dimensional multi-shaped crack patterns", IEEE J. Sel. Top. Quantum Electron., 25(6), 1229-1239. https://doi.org/10.1515/secm-2017-0256
- Lv, Z. and Chen, H. (2013), "Analytical models for determining the dosage of capsules embedded in self-healing materials", Comput. Mater. Sci., 68, 81-89. https://doi.org/10.1016/j.commatsci.2012.09.032
- Lv, Z. and Chen, H. (2014), "A probabilistic method for determining the volume fraction of pre-embedded capsules in self-healing materials", Smart Mater. Struct., 23(11). https://doi.org/10.1088/0964-1726/23/11/115009
- Meure, S., Wu, D.Y. and Furman, S. (2009), "Polyethylene-co-methacrylic acid healing agents for mendable epoxy resins", Acta Mater., 57(14), 4312-4320. https://doi.org/10.1016/j.actamat.2009.05.032
- Moghadam, A.A.A., Kouzani, A., Zamani, R., Magniez, K. and Kaynak, A. (2015), "Nonlinear large deformation dynamic analysis of electroactive polymer actuators", Smart Struct. Syst., Int. J., 15(6), 1601-1623. https://doi.org/10.12989/sss.2015.15.6.1601
- Munoz-Abella, B., Rubio, L. and Rubio, P. (2012), "A nondestructive method for elliptical cracks identification in shafts based on wave propagation signals and genetic algorithms", Smart Struct. Syst., Int. J., 10(1), 47-65. https://doi.org/10.12989/sss.2012.10.1.047
- Pang, J.W.C. and Bond, I.P. (2005), "'Bleeding composites'-damage detection and self-repair using a biomimetic approach", Compos. Part A Appl. Sci. Manuf., 36(2 SPEC. ISS.), 183-188. https://doi.org/10.1016/j.compositesa.2004.06.016
- Perelmuter, M. (2020), "Cracks self-healing-Physical and mathematical modelling", In: AIP Conference Proceedings (Vol. 2310, No. 1), pp. 109-110. https://doi.org/10.17223/9785946219242/69
- Rule, J.D., Sottos, N.R. and White, S.R. (2007), "Effect of microcapsule size on the performance of self-healing polymers", Polymer (Guildf)., 48(12), 3520-3529. https://doi.org/10.1016/j.polymer.2007.04.008
- Taheri, M.N., Sabet, S.A. and Kolahchi, R. (2020), "Experimental investigation of self-healing concrete after crack using nanocapsules including polymeric shell and nanoparticles core", Smart Struct. Syst., Int. J., 25(3), 337-343. https://doi.org/10.12989/sss.2020.25.3.337
- Talreja, R. (1989), "Damage development in composites: Mechanisms and modelling", J. Strain Anal. Eng. Des., 24(4), 215-222. https://doi.org/10.1243/03093247V244215
- Tsang, W.L. (2020), "The use of tapered double cantilever beam (TDCB) in investigating fracture properties of particles modified epoxy", SN Appl. Sci., 2(4), 1-10. https://doi.org/10.1007/s42452-020-2487-8
- Vallons, K.A.M., Drozdzak, R., Charret, M., Lomov, S.V. and Verpoest, I. (2015), "Assessment of the mechanical behaviour of glass fibre composites with a tough polydicyclopentadiene (PDCPD) matrix", Compos. Part A Appl. Sci. Manuf., 78, 191-200. https://doi.org/10.1016/J.COMPOSITESA.2015.08.016
- Verberg, R., Dale, A.T., Kumar, P., Alexeev, A. and Balazs, A.C. (2007), "Healing substrates with mobile, particle-filled microcapsules: Designing a 'repair and go' system", J. Royal Soc. Interf., 4(13), 349-357. https://doi.org/10.1098/rsif.2006.0165
- Wang, M., Hu, X. and Zhao, Y. (2021), "Probabilistic analysis models to determine capsule dosage for healing of cracks in concrete", Adv. Struct. Eng., 24(1), 52-64. https://doi.org/10.1177/1369433220942868
- White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N. and Viswanathan, S. (2001), "Autonomic healing of polymer composites", Nature, 409(6822), 794. https://doi.org/10.1038/35057232
- Yang, S., Caggiano, A., Yi, M., Ukrainczyk, N. and Koenders, E. A.B. (2019), "Modelling autogenous self-healing with dissoluble encapsulated particles using a phase field approach", Mecanica Comput., 37(34), 1457-1467.
- Yang, S., Aldakheel, F., Caggiano, A., Wriggers, P. and Koenders, E. (2020), "A review on cementitious self-healing and the potential of phase-field methods for modeling crack-closing and fracture recovery", Materials (Basel), 13(22), 1-31. https://doi.org/10.3390/ma13225265
- Zhang, Y., Wang, Y., Li, Y., Huang, Z., Zheng, R. and Tan, Y. (2021), "Self-healing of mechanical damage of polyethylene/microcapsules electrical insulation composite material", J. Mater. Sci. Mater. Electron., 32(22), 26329-26340. https://doi.org/10.1007/s10854-021-06953-9.