Acknowledgement
The research described in this paper was financially supported by China Postdoctoral Science Foundation (No. 2020M671319), the Open Project Funded by Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University (No. CPCSME2022-01), Jiangsu Planned Projects for Postdoctoral Research Funds (No. 2020Z317), and the Key Scientific Research Projects by Wanjiang University of Technology (No. WG23020ZD).
References
- Cai, J.G., Zhang, Q., Zhang, Y.Q., Lee, D. and Feng, J. (2018), "Structural evaluation of a foldable cable-strut structure for kinematic roofs", Steel Compos. Struct., 29(5), 669-680. https://doi.org/10.12989/scs.2018.29.5.669.
- Connelly, R. and Whiteley, W. (1996), "Second-order rigidity and prestress stability for tensegrity frameworks", SIAM J. Discrete Math., 9(3), 453-491. https://doi.org/10.1137/s0895480192229236.
- Chen, Y., Yan, J.Y. and Feng, J. (2019), "Stiffness contributions of tension structures evaluated from the levels of components and symmetry subspaces", Mech. Res. Commun., 100, 103401. https://doi.org/10.1016/j.mechrescom.2019.103401.
- Chen, L.M., Hu, D., Deng, H., Cui, Y.H. and Zhou, Y.Y. (2016), "Optimization of the construction scheme of the cable-strut tensile structure based on error sensitivity analysis", Steel Compos. Struct., 21(5), 1031-1043. https://doi.org/10.12989/scs.2016.21.5.1031.
- Deng, H., Jiang, Q.F. and Kwan, A.S.K. (2005), "Shape finding of incomplete cable-strut assemblies containing slack and prestressed elements", Comput. Struct., 83(21-22), 1767-1779. https://doi.org/10.1016/j.compstruc.2005.02.022.
- Fu, F. (2006), "Non-linear static analysis and design of Tensegrity domes", Steel Compos. Struct., 6(5), 417-433. https://doi.org/10.12989/scs.2006.6.5.417.
- Gonzalez, A., Luo, A.N. and Shi, D.Y. (2019), "Reconfiguration method of tensegrity units using infinitesimal mechanisms", Eng. Comput., 36(6), 1934-1949. https://doi.org/10.1108/ec-09-2018-0430.
- Guest, S.D. (2011), "The stiffness of tensegrity structures", IMA J. Appl. Math., 76(1), 57-66. https://doi.org/10.1093/imamat/hxq065.
- Hangai, Y., Kawaguchi, K. and Oda, K. (1992), "Self-equilibrated stress system and structural behavior of truss structures stabilized by cable tension", Int. J. Space Struct., 7(2), 91-99. https://doi.org/10.1177/026635119200700203.
- Han, S. and Lee, K. (2003), "A study of the stabilizing process of unstable structures by dynamic relaxation method", Comput. Struct., 81(17), 1677-1688. https://doi.org/10.1016/S0045-7949(03)00187-1.
- Kawaguchi, K., Hangai, Y., Pellegrino, S. and Furuya, H. (1996), "Shape and stress control analysis of prestressed truss structures", J. Reinf. Plast. Comp., 15(12), 1226-1236. https://doi.org/10.1177/073168449601501204.
- Lee, K., Han, S. and Park, T. (2012), "Stabilization process analysis of cable dome structure", Int. J. Steel Struct., 12(4), 495-507. https://doi.org/10.1007/s13296-012-4004-4.
- Lee, K., Huque, Z. and Han, S. (2014), "Analysis of stabilizing process for stress-erection of Strarch frame", Eng. Struct., 59, 49-67. https://doi.org/10.1016/j.engstruct.2013.09.043.
- Ma, S., Chen, M.H. and Skelton, R.E. (2022), "Tensegrity system dynamics based on finite element method", Compos. Struct., 280, 114838. https://doi.org/10.1016/j.compstruct.2021.114838.
- Panigrahi, R., Gupta, A. and Bhalla, S. (2009), "Dismountable steel tensegrity grids as alternate roof structures", Steel Compos. Struct., 9(3), 239-253. https://doi.org/10.12989/scs.2009.9.3.239.
- Pellegrino, S. (1993), "Structural computations with the singular value decomposition of the equilibrium matrix", Int. J. Solids Struct., 30(21), 3025-3035. https://doi.org/10.1016/0020-7683(93)90210-x.
- Wang, X.Y., Cai, J.G., Lee, D., Xu, Y.X. and Feng, J. (2021), "Numerical form-finding of multi-order tensegrity structures by grouping elements", Steel Compos. Struct., 41(2), 267-277. https://doi.org/10.12989/scs.2021.41.2.267.
- Yuan, X.F., Li, A.L., Shen, Y.B. and Qian, R.J. (2016), "Kinematic path analysis of kinematically indeterminate systems", KSCE J. Civ. Eng., 20(2), 813-819. https://doi.org/10.1007/s12205-015-0481-2.
- Yuan, X.F. and Dong, S.L. (2001), "Inverse analysis of construction process of cable dome", J. Build. Struct., 22(2), 75-79. https://doi.org/10.3321/j.issn:1000-6869.2001.02.014.
- Yuan, X.F. and Dong, S.L. (2003), "Integral feasible prestress of cable domes", Comput. Struct., 81(21), 2111-2119. https://doi.org/10.1016/s0045-7949(03)00254-2.
- Zhang, T.H., Kawaguchi, K. and Wu, M.E. (2019), "Optimization of frame structures with kinematical indeterminacy for optimum folding", J. Eng. Mech., 145(9), 04019072. https://doi.org/10.1061/(asce)em.1943-7889.0001646.
- Zhang, J.H. and Sun, K. (2011), "Construction process simulation of cable dome", Adv. Struct. Eng., 94-96, 750-754. https://doi.org/10.4028/www.scientific.net/amm.94-96.750.
- Zhang, P., Fan, W.Y., Chen, Y., Feng, J. and Sareh, P. (2022), "Structural symmetry recognition in planar structures using Convolutional Neural Networks", Eng. Struct., 260, 114227. https://doi.org/10.1016/j.engstruct.2022.114227.
- Zhang, W.F., Liu, Y.C., Ji, J. and Teng, Z.C. (2014), "Analysis of dynamic behavior for truss cable structures", Steel Compos. Struct., 16(2), 117-133. https://doi.org/10.12989/scs.2014.16.2.117.
- Zhang, P., Kawaguchi, K. and Feng, J. (2014), "Prismatic tensegrity structures with additional cables: Integral symmetric states of self-stress and cable-controlled reconfiguration procedure", Int. J. Solids Struct., 51(25-26), 4294-4306. https://doi.org/10.1016/j.ijsolstr.2014.08.014.
- Zhang, P. and Feng, J. (2017), "Initial prestress design and optimization of tensegrity systems based on symmetry and stiffness", Int. J. Solids Struct., 106-107, 68-90. https://doi.org/10.1016/j.ijsolstr.2016.11.030.
- Zhu, D.X., Deng, H. and Wu, X.S. (2020), "Selecting active members to drive the mechanism displacement of tensegrities", Int. J. Solids Struct., 191-192, 278-292. https://doi.org/10.1016/j.ijsolstr.2020.01.021.
- Zhang, P., Zhou, J.K. and Chen, J.S. (2021), "Form-finding of complex tensegrity structures using constrained optimization method", Compos. Struct., 268, 113971. https://doi.org/10.1016/j.compstruct.2021.113971.