DOI QR코드

DOI QR Code

Removal Efficiency of Non-point Source Pollutants through Constructed Wetland: Case Study of Annaecheon Wetland in Daecheong Reservoir

인공습지를 이용한 호소 유입 비점오염물질 제거 효율 평가: 대청호 안내천 습지 사례 분석

  • Received : 2023.08.21
  • Accepted : 2023.09.25
  • Published : 2023.10.31

Abstract

Harmful algal blooms (HABs) have become an increasing concern in terms of human health risks as well as aesthetic impairment due to their toxicity. The reduction of water pollutants, especially nutrients from non-point sources in a reservoir watershed, is fundamental for HABs prevention. We investigated the pollutant removal efficiencies of a constructed wetland to evaluate its feasibility as a method for controlling non-point sources located in the Annaecheon stream within the Daecheong Reservoir watershed. The overall removal efficiencies of pollutants were as follows: BOD 14.3%, COD 17.9%, SS 50.0%, T-N 19.0%, and T-P 35.4%. These results indicate that constructed wetlands are effective in controlling pollutants from non-point sources. The seasonal variation in removal efficiency depended on the specific pollutants. The removal efficiencies of BOD, COD, and T-N were stable throughout the year, except during winter, which might have been influenced by lower microorganism activity. In contrast, T-P showed a consistent removal efficiency even during the winter season, suggesting that the wetland can reduce external phosphorus loading to the reservoir. Regarding the effects of pollutant loadings on removal efficiency, the effluent concentrations of all pollutants were significantly decreased compared to those in the influent in case of middle and high loadings. This demonstrates that constructed wetlands can handle high pollutant loads, including the initial runoff during rainfall, to prevent reservoir eutrophication. Despite the various strengths of wetland water purification, there are limitations as passive treatment. Therefore, more case studies should be conducted to suggest optimum operational conditions for constructed wetlands, taking into consideration reservoir-specific characteristics.

녹조로 널리 알려진 남조류 과다증식은 심미적 불쾌감뿐만 아니라 독성물질을 생성하기 때문에 댐 수질 관리에 있어 큰 문제가 되고 있다. 녹조 발생을 억제하기 위하여 호소 유역으로부터 유입되는 비점오염물질 특히, 영양염류 저감이 필요하다. 본 연구에서는 친환경적 방법으로 알려진 인공습지의 장기간 운영 결과를 분석하여 비점오염물질 제어 수단으로서 인공습지의 적용 가능성 및 공정운영 관련 기초자료를 구축하기 위하여, 2014~2020년 동안 대청호 유역에 위치한 안내천 인공습지의 오염물질 처리효율을 분석하였다. 분석 결과, BOD 14.3%, COD 17.9%, SS 50.0%, T-N 19.0%, T-P 35.4%로 인공습지가 오염 물질 제거에 효과적임을 확인하였다. 계절별 처리효율은 오염물질별로 다른 경향을 보였는데, 주로 미생물의 반응에 의해 제거되는 BOD, COD, T-N은 겨울철에 비해 봄~가을에 높은 처리효율을 나타내었다. 그러나 수생식물에 의해 주로 제거되는 T-P는 처리효율에 있어 겨울에도 안정적인 처리효율을 나타내 호소 유입부하를 저감하는 데 효과적임을 확인하였다. 오염부하에 따른 제거율은 모든 오염물질이 유입수의 중간농도 및 고농도 구간에서 유출수 농도가 통계적으로 유의하게 감소한 것으로 나타났다. 이는 초기 강우와 같은 고부하 조건에서도 인공습지가 호소로 유입되는 비점오염물질을 안정적으로 제거해 호소의 부영양화를 억제하는 데 효과적으로 활용될 수 있음을 보여준다. 다만, 습지는 자연정화에 기반한 시설로 인위적인 공정 제어가 어렵기 때문에 향후 유역별 특성에 따라 다양한 운영사례 연구가 정립된다면 우리나라 호소의 녹조 문제 해결을 위해 유용한 방법이 될 것으로 판단된다.

Keywords

References

  1. Ahn C-Y, Lee CS, Choi JW, Lee S, Oh H-M. 2015. Global occurrence of harmful cyanobacterial blooms and N, P-limitation strategy for bloom control, Korean J. Environ Biol. 33: 1-6. [Korean Literature] https://doi.org/10.11626/KJEB.2015.33.1.001
  2. Ahn J-S, Park W-K, Cho J-H. 2011. Characteristics of wastewater treatment of sewage mixed with industrial wastewater. Journal of the Korea Academia-Industrial Cooperation Society, 12: 3341-3352. [Korean Literature] https://doi.org/10.5762/KAIS.2011.12.7.3341
  3. Bayley M, Davison L, Headley TR. 2003. Nitrogen removal from domestic effluent using subsurface flow constructed wetlands: influence of depth, hydraulic residence time and pre-nitrification. Water Sci Technol. 48: 175-182. https://doi.org/10.2166/wst.2003.0313
  4. Chapra SC, Boehlert B, Fant C, Bierman Jr. VJ, Henderson J, Mills D, Mas DML, Rennels L, Jantarasami L, Martinich J, Strzepek KM, Paerl HW. 2017. Climate change impacts on harmful algal blooms in US freshwaters: a screening-level assessment. Environ Sci Technol. 51(16): 8933-8943. https://doi.org/10.1021/acs.est.7b01498
  5. Choi DH, Choi K, Kim DS, Kim SW, Choi DH, Hwang IS, Lee YK, Kang H. 2008. Temporal and spacial distributions of water quality and evaluation of pollutant removal efficiency in the Sihwa constructed wetland. J. of KSEE. 30(10): 1013-1020. [Korean Literature]
  6. Choi H, Reyes NJD, Jeon M, Kim LH. 2021. Constructed wetlands in South Korea: current status and performance assessment. Sustainability. 13: 10410.
  7. Choi JY, Ban WJ. 2007. Improving artificial wetlands for nonpoint source pollution control. KEI Report WO-06. [Korean Literature]
  8. Christensen VG, Khan E. 2020. Freshwater neurotoxins and concerns for human, animal, and ecosystem health: a review of anatoxina and saxitoxin. Sci Total Environ. 736: 139515.
  9. Jeong GT, Park SH, Park JH, Lim ET, Bang SH, Park DH. 2009. Effect of factors of nitrification process in wastewater treatment. KSBB Journal. 24(3): 296-302. [Korean Literature]
  10. Kang HJ, Song KY. 2004. Water treatment using constructed wetlands and research perspectives in Korea, Journal of Wetlands Research. 6(2): 57-63. [Korean Literature]
  11. Karosiene J, Savadova-Ratkus K, Torunska-Sitarz A, Koreiviene J, Kasperoviciene J, Vitonyte I, Blaszczyk A, Mazur-Marzec H. 2020. First report of saxitoxins and anatoxin-a production by cyanobacteria from Lithuanian lakes. Eur J Phycol. 55: 327-538. https://doi.org/10.1080/09670262.2020.1734667
  12. Kill K, Grinberga L, Koskiaho J, Mander u, Wahlroos O, Lauva D, Parn J, Kasak K. 2022. Phosphorus removal efficiency by in-stream constructed wetlands treating agricultural runoff: influence of vegetation and design. Ecol Eng. 180:106664.
  13. Kim DO, Park JC. 2020. Cycling of matters in the constructed wetland. Journal of Environmental Science International, 29(3): 299-306. [Korean Literature] https://doi.org/10.5322/JESI.2020.29.3.299
  14. Kim HS, Hwang SJ. 2004. Seasonal variation of water quality in a shallow eutrophic reservoir. Korean Journal of Ecology and Environment, 37: 180-192. [Korean Literature]
  15. Ko DH, Chung YC, Seo SC. 2010. Removal mechanisms for water pollutant in constructed wetlands. Journal of Korean Society of Environmental Engineers, 32: 379-392. [Korean Literature]
  16. K-water. 2014. Annual Operation Report of Sooakcheon and Annae-cheon constructed wetland in 2013. [Korean Literature]
  17. Lee CG, Fletcher TD, Sun G. 2009. Nitrogen removal in constructed wetland systems. Eng Life Sci. 9: 11-22. https://doi.org/10.1002/elsc.200800049
  18. Lee SG, Seo DC, Kang SW, Choi IW, Lim BJ, Park JH, Kim KS, Lee JB, Heo JS, Cho JS. 2011. Evaluation of wastewater treatment efficiency in Dongbokcheon constructed wetlands for treating non-point source pollution at different treatment time and wastewater loading. Korean Journal of Soil Science and Fertilizer, 44: 929-936. [Korean Literature] https://doi.org/10.7745/KJSSF.2011.44.5.929
  19. Lee S-G, Seo D-C, Choi I-W, Kang S-W, Seo Y-J, Lim B-J, Lee J-B, Kim S-D, Heo J-S, Cho J-S. 2012. Evaluation of Aquatic Ecological Efficiency in Juam Lake Eco-Wetlands for Reducing Non-Point Source Pollutants. Korean Journal of Soil Science and Fertilizer, 45: 317-24. https://doi.org/10.7745/KJSSF.2012.45.2.317
  20. Lee SY, Choi JY, Kim L-H. 2015. Suggestion of appropriate design and maintenance in a constructed wetland using monitoring results. Journal of Wetlands Research, 17: 428-435. https://doi.org/10.17663/JWR.2015.17.4.428
  21. Li X, Ding A, Zheng L, Anderson BC, Kong L, Wu A, Xing L. 2018. Relationship between design parameters and removal efficiency for constructed wetlands in China. Ecological Engineering, 123: 135-140.
  22. Mander U, Kuusemets V, Lohmus K, Mauring T, Teiter S, Augustin J. 2003. Nitrous oxide, dinitrogen and methane emission in a subsurface flow constructed wetland. Water Sci Technol. 48: 135-142.
  23. Maucieri C, Salvato M, Borin M. 2020. Vegetation contribution on phosphorus removal in constructed wetlands. Ecological Engineering, 152:105853.
  24. Michalak AM, Anderson EJ, Beletsky D, Boland S, Bosch NS, Bridgeman TB, Chaffin JD, Cho K, Confesor R, Daloglu I, DePinto JV, Evans MA, Fahnenstiel GL, He L, Ho JC, Jenkins L, Johengen TH, Kuo KC, Laporte E, Liu X, McWilliams MR, Moore MR, Posselt DJ, Richards RP, Scavia D, Steiner AL, Verhamme E, Wright DM, Zagorski MA. 2013. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc Natl Acad Sci USA. 110: 6448-6452. https://doi.org/10.1073/pnas.1216006110
  25. Mishra P, Pandey CM, Singh U, Gupta A, Sahu C, Keshri A. 2019. Descriptive statistics and normality tests for statistical data. Annals of Cardiac Anaesthesia. 22: 67.
  26. MOE (Ministry of Environment, Korea). 2016. Standard Methods for Analysis of Water Pollution. Ministry of Environment, Sejong, Republic of Korea. [Korean Literature]
  27. MOE (Ministry of Environment, Korea). 2021. Waterworks Statistical Annual Report. Ministry of Environment, Sejong, Republic of Korea. [Korean Literature]
  28. Nairn RW, Mitsch WJ. 1999. Phosphorus removal in created wetland ponds receiving river overflow. Ecological Engineering, 14(1-2): 107-126. https://doi.org/10.1016/S0925-8574(99)00023-3
  29. Park HS, Yoon SW, Chung SW, Hwang HS. 2016. Effect of pollutants control measures in So-oak watershed on the control of algae growth in Daecheong Reservoir. J. Environ Impact Assess. 25:248-260. [Korean Literature] https://doi.org/10.14249/eia.2016.25.4.248
  30. Park PN, Cho YC. 2023. Evaluation of removal efficiency of pollutants in constructed wetlands for controlling nonpoint sources in the Daechung Reservoir watershed. Korean Journal of Ecology and Environment, 56: 127-139. [Korean Literature] https://doi.org/10.11614/KSL.2023.56.2.127
  31. Paul VJ. 2008. Global warming and cyanobacterial harmful algal blooms. In: Hudnell HK, editor. Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Advances in Experimental Medicine and Biology, vol. 619. New York, NY: Springer; pp. 239-257.
  32. Rao P, Gupta N, Bhaskar A, Jayaraj R. 2002. Toxins and bioactive compounds from cyanobacteria and their implications on human health. J Environ Biol. 23: 215-224.
  33. Saeed T, Sun G. 2012. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. J. Environ Manage, 112: 429-448. https://doi.org/10.1016/j.jenvman.2012.08.011
  34. Seo DC, Jo IS, Lim SC, Lee BJ, Park SK, Cheon YS, Park JH, Lee HJ, Cho JS, Heo JS. 2009. Evaluation of pollutant removal efficiency in environmentally friendly full-scale constructed wetlands for treating domestic sewage during long-term monitoring. Korean Journal of Environmental Agriculture, 28: 97-105. [Korean Literature] https://doi.org/10.5338/KJEA.2009.28.2.097
  35. Seo DC, Kang SW, Lim BJ, Park JH, Kim KS, Lee JB, Kim HO, Heo JS, Chang NI, Seong HH. 2011. Evaluation of aquatic ecological characteristics in Sinpyongcheon constructed wetlands for treating non-point source pollution. Korean Journal of Soil Science and Fertilizer, 44: 400-407. [Korean Literature] https://doi.org/10.7745/KJSSF.2011.44.3.400
  36. Seres M, Hnatkova T, Vymazal J, Vanek T. 2017. Removal efficiency of constructed wetland for treatment of agricultural wastewaters. Chemistry Journal of Moldova. 1: 45-52. https://doi.org/10.19261/cjm.2017.403
  37. Shim MJ, Yoon JY, Lee SH. 2015. Water quality properties of tributaries of Daechung Lake, Korea. Korean Journal of Ecology and Environment, 48: 12-25. [Korean Literature] https://doi.org/10.11614/KSL.2015.48.1.012
  38. Shin JS, Kim SC, Cho KJ, Choi CH, Choi IW, Park JJ, Park GH. 2009. Application of the hybrid constructed wetland for a reuse of the effluent from bio-industrial wastewater treatment plant. Journal of Wetlands Research, 11(1): 115-121. [Korean Literature]
  39. Song KY, Zoh KD, Kang H. 2007. Release of phosphate in a wetland by changes in hydrological regime. Sci Total Environ. 380(1-3): 13-18. https://doi.org/10.1016/j.scitotenv.2006.11.035
  40. Sundaravadivel M, Vigneswaran S. 2001. Constructed wetlands for wastewater treatment. Crit Rev Environ Sci Technol. 31: 351-409. https://doi.org/10.1080/20016491089253
  41. Wu J, Jin C, Yang Z, Tian J, Yang R. 2015. Synthesis of phosphorus-doped carbon hollow spheres as efficient metal-free electrocatalysts for oxygen reduction. Carbon. 82: 562-571. https://doi.org/10.1016/j.carbon.2014.11.008
  42. Yang HM. 2001. Treatment efficiency of a surface-flow wetland system constructed on floodplain. Korean Journal of Environmental Agriculture, 20(4): 277-283. [Korean Literature]