DOI QR코드

DOI QR Code

Ferroptosis-Like Death in Microorganisms: A Novel Programmed Cell Death Following Lipid Peroxidation

  • Min Seok Kwun (School of Life Sciences, BK 21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University) ;
  • Dong Gun Lee (School of Life Sciences, BK 21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University)
  • Received : 2023.07.03
  • Accepted : 2023.07.14
  • Published : 2023.08.28

Abstract

Ferroptosis is a new kind of programmed cell death of which occurrence in microorganisms is not clearly verified. The elevated level of reactive oxygen species (ROS) influences cellular metabolisms through highly reactive hydroxyl radical formation under the iron-dependent Fenton reaction. Iron contributes to ROS production and acts as a cofactor for lipoxygenase to catalyze poly unsaturated fatty acid (PUFA) oxidation, exerting oxidative damage in cells. While ferroptosis is known to take place only in mammalian cells, recent studies discovered the possible ferroptosis-like death in few specific microorganisms. Capacity of integrating PUFA into intracellular membrane phospholipid has been considered as a key factor in bacterial or fungal ferroptosis-like death. Vibrio species in bacteria and Saccharomyces cerevisiae in fungi exhibited certain characteristics. Therefore, this review focus on introducing the occurrence of ferroptosis-like death in microorganisms and investigating the mode of action underlying the cells based on contribution of lipid peroxidation and iron-dependent reaction.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2022R1A2C1011642).

References

  1. Yu H, Guo P, Xie X, Wang Y, Chen G. 2017. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J. Cell. Mol. Med. 21: 648-657. https://doi.org/10.1111/jcmm.13008
  2. Nagamalleswari E, Rao S, Vasu K, Nagaraja V. 2017. Restriction endonuclease triggered bacterial apoptosis as a mechanism for long time survival. Nucleic Acids Res. 45: 8423-834. https://doi.org/10.1093/nar/gkx576
  3. Dewachter L, Verstraeten N, Fauvart M, Michiels J. 2016. The bacterial cell cycle checkpoint protein Obg and its role in programmed cell death. Microb. Cell. 3: 255-256. https://doi.org/10.15698/mic2016.06.507
  4. Allocati N, Masulli M, Di Ilio C, De Laurenzi V. 2015. Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis. 6: e1609.
  5. Tanouchi Y, Lee AJ, Meredith H, You L. 2013. Programmed cell death in bacteria and implications for antibiotic therapy. Trends Microbiol. 21: 265-270. https://doi.org/10.1016/j.tim.2013.04.001
  6. Andryukov BG, Somova LM, Timchenko NF. 2018. Molecular and genetic characteristics of cell death in prokaryotes. Mol. Genet. Microbiol. Virol. 33: 73-83. https://doi.org/10.3103/S0891416818020039
  7. Lewis K. 2000. Programmed death in bacteria. Microbiol. Mol. Biol. Rev. 64: 503-514. https://doi.org/10.1128/MMBR.64.3.503-514.2000
  8. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149: 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042
  9. Battaglia AM, Chirillo R, Aversa I, Sacco A, Costanzo F, Biamonte F. 2020. Ferroptosis and cancer: mitochondria meet the "iron maiden" cell death. Cells 9: 1505.
  10. Wang H, Liu C, Zhao Y, Gao G. 2020. Mitochondria regulation in ferroptosis. Eur. J. Cell Biol. 99: 151058.
  11. Chen X, Comish PB, Tang D, Kang R. 2021. Characteristics and biomarkers of ferroptosis. Front. Cell Dev. Biol. 9: 637162.
  12. Latunde-Dada GO. 2017. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochim. Biophys. Acta Gen. Subj. 1861: 1893-900. https://doi.org/10.1016/j.bbagen.2017.05.019
  13. Cao JY, Dixon SJ. 2016. Mechanisms of ferroptosis. Cell. Mol. Life Sci. 73: 2195-209. https://doi.org/10.1007/s00018-016-2194-1
  14. Yang WS, Stockwell BR. 2016. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 26: 165-176. https://doi.org/10.1016/j.tcb.2015.10.014
  15. Chen X, Yu C, Kang R, Tang D. 2020. Iron metabolism in ferroptosis. Front. Cell Dev. Biol. 8: 590226.
  16. Stoyanovsky DA, Tyurina YY, Shrivastava I, Bahar I, Tyurin VA, Protchenko O, et al. 2019. Iron catalysis of lipid peroxidation in ferroptosis: regulated enzymatic or random free radical reaction? Free Radic. Biol. Med. 133: 153-161. https://doi.org/10.1016/j.freeradbiomed.2018.09.008
  17. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. 2016. Ferroptosis: process and function. Cell Death Differ. 23: 369-379. https://doi.org/10.1038/cdd.2015.158
  18. Bayles KW. 2014. Bacterial programmed cell death: making sense of a paradox. Nat. Rev. Microbiol. 12: 63-69. https://doi.org/10.1038/nrmicro3136
  19. Dewachter L, Verstraeten N, Monteyne D, Kint CI, Versees W, Perez-Morga D, et al. 2015. A Single-amino-acid substitution in Obg activates a new programmed cell death pathway in Escherichia coli. MBio 6: e 01935-15.
  20. Kohanski MA, Dwyer DJ, Collins JJ. 2010. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 8: 423-435. https://doi.org/10.1038/nrmicro2333
  21. Peeters SH, de Jonge MI. 2018. For the greater good: programmed cell death in bacterial communities. Microbiol. Res. 207: 161-169. https://doi.org/10.1016/j.micres.2017.11.016
  22. Mruk I, Kaczorowski T, Witczak A. 2019. Natural tuning of restriction endonuclease synthesis by cluster of rare arginine codons. Sci. Rep. 9: 5808.
  23. Schippers JH, Nguyen HM, Lu D, Schmidt R, Mueller-Roeber B. 2012. ROS homeostasis during development: an evolutionary conserved strategy. Cell. Mol. Life Sci. 69: 3245-3257. https://doi.org/10.1007/s00018-012-1092-4
  24. Hong Y, Li L, Luan G, Drlica K, Zhao X. 2017. Contribution of reactive oxygen species to thymineless death in Escherichia coli. Nat. Microbiol. 2: 1667-1675. https://doi.org/10.1038/s41564-017-0037-y
  25. Lee B, Hwang JS, Lee DG. 2019. Induction of apoptosis-like death by periplanetasin-2 in Escherichia coli and contribution of SOS genes. Appl. Microbiol. Biotechnol. 103: 1417-1427. https://doi.org/10.1007/s00253-018-9561-9
  26. Salehi F, Behboudi H, Kavoosi G, Ardestani SK. 2018. Oxidative DNA damage induced by ROS-modulating agents with the ability to target DNA: a comparison of the biological characteristics of citrus pectin and apple pectin. Sci. Rep. 8: 13902.
  27. Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. 2019. ROS and the DNA damage response in cancer. Redox Biol. 25: 101084.
  28. Basu S, De D, Dev Khanna H, Kumar A. 2014. Lipid peroxidation, DNA damage and total antioxidant status in neonatal hyperbilirubinemia. J. Perinatol. 34: 519-523. https://doi.org/10.1038/jp.2014.45
  29. Crawford MA, Tapscott T, Fitzsimmons LF, Liu L, Reyes AM, Libby SJ, et al. 2016. Redox-active sensing by bacterial DksA transcription factors is determined by cysteine and zinc content. MBio 7: e02161-15.
  30. Dwyer DJ, Belenky PA, Yang JH, MacDonald IC, Martell JD, Takahashi N, et al. 2014. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl. Acad. Sci. USA 111: E2100-9. https://doi.org/10.1073/pnas.1401876111
  31. Zhao X, Drlica K. 2014. Reactive oxygen species and the bacterial response to lethal stress. Curr. Opin. Microbiol. 21: 1-6. https://doi.org/10.1016/j.mib.2014.06.008
  32. Belenky P, Ye JD, Porter CB, Cohen NR, Lobritz MA, Ferrante T, et al. 2015. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep. 13: 968-980. https://doi.org/10.1016/j.celrep.2015.09.059
  33. Lobritz MA, Belenky P, Porter CB, Gutierrez A, Yang JH, Schwarz EG, et al. 2015. Antibiotic efficacy is linked to bacterial cellular respiration. Proc. Natl. Acad. Sci. USA 112: 8173-8180. https://doi.org/10.1073/pnas.1509743112
  34. Hemnani T, Parihar MS. 1998. Reactive oxygen species and oxidative DNA damage. Indian J. Physiol. Pharmacol. 42: 440-452.
  35. Winterbourn CC. 1995. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol. Lett. 82-83: 969-974. https://doi.org/10.1016/0378-4274(95)03532-X
  36. Shan X, Li S, Sun B, Chen Q, Sun J, He Z, et al. 2020. Ferroptosis-driven nanotherapeutics for cancer treatment. J. Control. Release 319: 322-332. https://doi.org/10.1016/j.jconrel.2020.01.008
  37. Zeng C, Tang H, Chen H, Li M, Xiong D. 2020. Ferroptosis: a new approach for immunotherapy. Cell Death Discov. 6: 122.
  38. Shan X, Li S, Sun B, Chen Q, Sun J, He Z, et al. 2020. Ferroptosis-driven nanotherapeutics for cancer treatment. J .Control. Release 319: 322-332. https://doi.org/10.1016/j.jconrel.2020.01.008
  39. Conrad M, Kagan VE, Bayir H, Pagnussat GC, Head B, Traber MG, et al. 2018. Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev. 32: 602-619. https://doi.org/10.1101/gad.314674.118
  40. Bachhawat AK, Ganguli D, Kaur J, Kasturia N, Thakur A, Kaur H, et al. 2009. Glutathione production in yeast. Yeast Biotechnol. Divers. Appl. 2009: 259-280. https://doi.org/10.1007/978-1-4020-8292-4_13
  41. Manfredini V, Roehrs R, Peralba MC, Henriques JA, Saffi J, Ramos AL, et al. 2004. Glutathione peroxidase induction protects Saccharomyces cerevisiae sod1deltasod2delta double mutants against oxidative damage. Braz. J. Med. Biol. Res. 37: 159-165. https://doi.org/10.1590/S0100-879X2004000200001
  42. Kho CW, Lee PY, Bae KH, Cho S, Lee ZW, Park BC, et al. 2006. Glutathione peroxidase 3 of Saccharomyces cerevisiae regulates the activity of methionine sulfoxide reductase in a redox state-dependent way. Biochem. Biophys. Res. Commun. 348: 25-35. https://doi.org/10.1016/j.bbrc.2006.06.067