DOI QR코드

DOI QR Code

Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for the Re-Emerging Human Monkeypox Virus

  • Wooseong Lee (Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Yu-Jin Kim (Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Su Jin Lee (Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Dae-Gyun Ahn (Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Seong-Jun Kim (Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology)
  • Received : 2023.06.20
  • Accepted : 2023.07.22
  • Published : 2023.08.28

Abstract

Monkeypox (Mpox) virus, a member of the Poxviridae family, causes a severe illness similar to smallpox, which is characterized by symptoms such as high fever, rash, and pustules. Human-to-human transmission cases have been reported but remained low since the first recorded case of human infection occurred in the Congo in 1970. Recently, Mpox has re-emerged, leading to an alarming surge in infections worldwide since 2022, originating in the United Kingdom. Consequently, the World Health Organization (WHO) officially declared the '2022-23 Mpox outbreak'. Currently, no specific therapy or vaccine is available for Mpox. Therefore, patients infected with Mpox are treated using conventional therapies developed for smallpox. However, the vaccines developed for smallpox have demonstrated only partial efficacy against Mpox, allowing viral transmission among humans. In this review, we discuss the current epidemiology of the ongoing Mpox outbreak and provide an update on the progress made in diagnosis, treatment, and development of vaccines for Mpox.

Keywords

Acknowledgement

This work was supported in part by the Korea Research Institute of Chemical Technology (KRICT) (Project No. KK2333-20) and the National Research Foundation of Korea (grant number NRF-2021M3E5E3080540).

References

  1. McCollum AM, Damon IK. 2013. Human Monkeypox. Clin. Infect. Dis. 58: 260-267.  https://doi.org/10.1093/cid/cit703
  2. WHO. 2023. 2022-23 Mpox outbreak: Global Trends. Available from https://worldhealthorg.shinyapps.io/mpx_global/. Accessed on May 16, 2023. 
  3. Chadha J, Khullar L, Gulati P, Chhibber S, Harjai K. 2022. Insights into the monkeypox virus: Making of another pandemic within the pandemic? Environ. Microbiol. 24: 4547-4560.  https://doi.org/10.1111/1462-2920.16174
  4. 2023. Mpox (Monkeypox): Causes, Symptoms, Treatment & Prevention. Available from https://my.clevelandclinic.org/health/diseases/22371-monkeypox#symptoms-and-causes. Accessed on April 25, 2023. 
  5. 2022. Investigation into monkeypox outbreak in England: technical briefing 1. Available from https://www.gov.uk/government/publications/monkeypox-outbreak-technical-briefings/investigation-into-monkeypox-outbreak-in-england-technical-briefing-1#sources-and-acknowledgments. Accessed on Sep. 23, 2023. 
  6. Ahmed SF, Sohail MS, Quadeer AA, McKay MR. 2022. Vaccinia-virus-based vaccines are expected to elicit highly cross-reactive immunity to the 2022 monkeypox virus. Viruses 14: 1960. 
  7. Louten J, Reynolds N. 2016. Essential human virology, pp. 273-290. Ed. Academic Press is an imprint of Elsevier, London, UK. 
  8. Shi D, He P, Song Y, Cheng S, Linhardt RJ, Dordick JS, et al. 2022. Kinetic and structural aspects of glycosaminoglycan - Monkeypox virus protein A29 interactions using surface plasmon resonance. Molecules 27: 5898. 
  9. Moss B. 2016. Membrane fusion during poxvirus entry. Semin. Cell. Dev. Biol. 60: 89-96.  https://doi.org/10.1016/j.semcdb.2016.07.015
  10. Roberts KL, Breiman A, Carter GC, Ewles HA, Hollinshead M, Law M, et al. 2009. Acidic residues in the membrane-proximal stalk region of vaccinia virus protein B5 are required for glycosaminoglycan-mediated disruption of the extracellular enveloped virus outer membrane. J. Gen. Virol. 90: 1582-1591.  https://doi.org/10.1099/vir.0.009092-0
  11. Gray RDM, Albrecht D, Beerli C, Huttunen M, Cohen GH, White IJ, et al. 2019. Nanoscale polarization of the entry fusion complex of vaccinia virus drives efficient fusion. Nat. Microbiol. 4: 1636-1644.  https://doi.org/10.1038/s41564-019-0488-4
  12. Moss B. 2013. Poxvirus DNA replication. Cold Spring Harb. Perspect. Biol. 5: a010199. 
  13. Katsafanas GC, Moss B. 2007. Colocalization of transcription and translation within cytoplasmic poxvirus factories coordinates viral expression and subjugates host functions. Cell Host Microbe. 2: 221-228.  https://doi.org/10.1016/j.chom.2007.08.005
  14. Li H, Huang QZ, Zhang H, Liu ZX, Chen XH, Ye LL, et al. 2023. The land-scape of immune response to monkeypox virus. EBioMedicine 87: 104424. 
  15. Liang C, Qian J, Liu L. 2022. Biological characteristics, biosafety prevention and control strategies for the 2022 multi-country outbreak of monkeypox. Biosaf. Health 04: 376-385.  https://doi.org/10.1016/j.bsheal.2022.11.001
  16. Reynolds MG, Damon IK. 2012. Outbreaks of human monkeypox after cessation of smallpox vaccination. Trends Microbiol. 20: 80-87.  https://doi.org/10.1016/j.tim.2011.12.001
  17. Isidro J, Borges V, Pinto M, Sobral D, Santos JD, Nunes A, et al. 2022. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat. Med. 28: 1569-1572.  https://doi.org/10.1038/s41591-022-01907-y
  18. Alcami A. 2023. Pathogenesis of the circulating mpox virus and its adaptation to humans. Proc. Natl. Acad. Sci. USA120: e2301662120. 
  19. WHO. 2022. Laboratory testing for the monkeypox virus: Interim guidance. Available from https://www.who.int/publications/i/item/WHO-MPX-laboratory-2022.1. Accessed on 05.23, 2022. 
  20. Luciani L, Inchauste L, Ferraris O, Charrel R, Nougairede A, Piorkowski G, et al. 2021. A novel and sensitive real-time PCR system for universal detection of poxviruses. Sci. Rep. 11: 1798. 
  21. Orba Y, Sasaki M, Yamaguchi H, Ishii A, Thomas Y, Ogawa H, et al. 2015. Orthopoxvirus infection among wildlife in Zambia. J. Gen. Virol. 96: 390-394.  https://doi.org/10.1099/vir.0.070219-0
  22. Li Y, Olson VA, Laue T, Laker MT, Damon IK. 2006. Detection of monkeypox virus with real-time PCR assays. J. Clin. Virol. 36: 194-203.  https://doi.org/10.1016/j.jcv.2006.03.012
  23. Shchelkunov SN, Shcherbakov DN, Maksyutov RA, Gavrilova EV. 2011. Species-specific identification of variola, monkeypox, cowpox, and vaccinia viruses by multiplex real-time PCR assay. J. Virol. Methods 175: 163-169.  https://doi.org/10.1016/j.jviromet.2011.05.002
  24. Kulesh DA, Loveless BM, Norwood D, Garrison J, Whitehouse CA, Hartmann C, et al. 2004. Monkeypox virus detection in rodents using real-time 3'-minor groove binder TaqMan assays on the Roche LightCycler. Lab. Invest. 84: 1200-1208.  https://doi.org/10.1038/labinvest.3700143
  25. CDC. 2023. Mpox Generic PCR Protocol. Available from https://www.cdc.gov/poxvirus/mpox/lab-personnel/index.html. Accessed on March 7, 2023. 
  26. Li Y, Zhao H, Wilkins K, Hughes C, Damon IK. 2010. Real-time PCR assays for the specific detection of monkeypox virus West African and Congo Basin strain DNA. J. Virol. Methods 169: 223-227.  https://doi.org/10.1016/j.jviromet.2010.07.012
  27. WHO. 2022. Surveillance, case investigation and contact tracing for mpox (monkeypox): interim guidance. Available from https://www.who.int/publications/i/item/WHO-MPX-Surveillance-2022.4. Accessed on 12.22, 2022. 
  28. Karem KL, Reynolds M, Braden Z, Lou G, Bernard N, Patton J, et al. 2005. characterization of acute-phase humoral immunity to monkeypox: use of immunoglobulin M enzyme-linked immunosorbent assay for detection of monkeypox infection during the 2003 North American outbreak. Clin. Diagn. Lab. Immunol. 12: 867-872.  https://doi.org/10.1128/CDLI.12.7.867-872.2005
  29. Karem KL, Reynolds M, Braden Z, Lou G, Bernard N, Patton J, et al. 2005. Characterization of acute-phase humoral immunity to Monkeypox: Use of immunoglobulin M enzyme-linked immunosorbent assay for detection of Monkeypox infection during the 2003 North American outbreak. Clin. Diagn. Lab. Immunol. 12: 867-872.  https://doi.org/10.1128/CDLI.12.7.867-872.2005
  30. Alakunle E, Moens U, Nchinda G, Okeke MI. 2020. Monkeypox virus in Nigeria: Infection biology, epidemiology, and evolution. Viruses 12: 1257. 
  31. CDC. 2023. Treatment Information for Healthcare Professionals. Available from https://www.cdc.gov/poxvirus/mpox/clinicians/treatment.html. Accessed vailable from https://www.cdc.gov/poxvirus/mpox/lab-personnel/index.html. Accessed on April 21, 2023. 
  32. FDA. 2023. Smallpox Preparedness and Response Updates from FDA. Available from https://www.fda.gov/emergency-preparedness-and-response/mcm-issues/smallpox-preparedness-and-response-updates-fda. Accessed vailable from https://www.cdc.gov/poxvirus/mpox/lab-personnel/index.html. Accessed on May 3, 2023. 
  33. Hostetler KY. 2009. Alkoxyalkyl prodrugs of acyclic nucleoside phosphonates enhance oral antiviral activity and reduce toxicity: current state of the art. Antiviral Res. 82: A84-98.  https://doi.org/10.1016/j.antiviral.2009.01.005
  34. Kern ER, Hartline C, Harden E, Keith K, Rodriguez N, Beadle JR, et al. 2002. Enhanced inhibition of orthopoxvirus replication in vitro by alkoxyalkyl esters of cidofovir and cyclic cidofovir. Antimicrob. Agents Chemother. 46: 991-995.  https://doi.org/10.1128/AAC.46.4.991-995.2002
  35. Beadle JR, Hartline C, Aldern KA, Rodriguez N, Harden E, Kern ER, et al. 2002. Alkoxyalkyl esters of cidofovir and cyclic cidofovir exhibit multiple-log enhancement of antiviral activity against cytomegalovirus and herpesvirus replication in vitro. Antimicrob. Agents Chemother. 46: 2381-2386.  https://doi.org/10.1128/AAC.46.8.2381-2386.2002
  36. Hartline CB, Gustin KM, Wan WB, Ciesla SL, Beadle JR, Hostetler KY, et al. 2005. Ether lipid-ester prodrugs of acyclic nucleoside phosphonates: activity against adenovirus replication in vitro. J. Infect. Dis. 191: 396-399.  https://doi.org/10.1086/426831
  37. Siegrist EA, Sassine J. 2023. Antivirals with activity against Mpox: A clinically oriented review. Clin. Infect. Dis. 76: 155-164.  https://doi.org/10.1093/cid/ciac622
  38. Yang G, Pevear DC, Davies MH, Collett MS, Bailey T, Rippen S, et al. 2005. An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus challenge. J. Virol. 79: 13139-13149.  https://doi.org/10.1128/JVI.79.20.13139-13149.2005
  39. Grosenbach DW, Jordan R, Hruby DE. 2011. Development of the small-molecule antiviral ST-246 as a smallpox therapeutic. Future Virol. 6: 653-671.  https://doi.org/10.2217/fvl.11.27
  40. Bell E, Shamim M, Whitbeck JC, Sfyroera G, Lambris JD, Isaacs SN. 2004. Antibodies against the extracellular enveloped virus B5R protein are mainly responsible for the EEV neutralizing capacity of vaccinia immune globulin. Virology 325: 425-431.  https://doi.org/10.1016/j.virol.2004.05.004
  41. Thet AK, Kelly PJ, Kasule SN, Shah AK, Chawala A, Latif A, et al. 2023. The use of vaccinia immune globulin in the treatment of severe Mpox. virus infection in human immunodeficiency virus/AIDS. Clin. Infect. Dis. 76: 1671-1673. 
  42. Kane EM, Shuman S. 1995. Adenosine N1-oxide inhibits vaccinia virus replication by blocking translation of viral early mRNAs. J. Virol. 69: 6352-6358.  https://doi.org/10.1128/jvi.69.10.6352-6358.1995
  43. Myskiw C, Piper J, Huzarewich R, Booth TF, Cao J, He R. 2010. Nigericin is a potent inhibitor of the early stage of vaccinia virus replication. Antiviral Res. 88: 304-310.  https://doi.org/10.1016/j.antiviral.2010.10.001
  44. Myskiw C, Deschambault Y, Jefferies K, He R, Cao J. 2007. Aurintricarboxylic acid inhibits the early stage of vaccinia virus replication by targeting both cellular and viral factors. J. Virol. 81: 3027-3032.  https://doi.org/10.1128/JVI.02531-06
  45. Rizk JG, Lippi G, Henry BM, Forthal DN, Rizk Y. 2022. Prevention and treatment of Monkeypox. Drugs 82: 957-963.  https://doi.org/10.1007/s40265-022-01742-y
  46. Prichard MN, Keith KA, Quenelle DC, Kern ER. 2006. Activity and mechanism of action of N-methanocarbathymidine against herpesvirus and orthopoxvirus infections. Antimicrob. Agents Chemother. 50: 1336-1341.  https://doi.org/10.1128/AAC.50.4.1336-1341.2006
  47. Pedrali-Noy G, Spadari S. 1980. Mechanism of inhibition of herpes simplex virus and vaccinia virus DNA polymerases by aphidicolin, a highly specific inhibitor of DNA replication in eucaryotes. J. Virol. 36: 457-464.  https://doi.org/10.1128/jvi.36.2.457-464.1980
  48. Taddie JA, Traktman P. 1993. Genetic characterization of the vaccinia virus DNA polymerase: cytosine arabinoside resistance requires a variable lesion conferring phosphonoacetate resistance in conjunction with an invariant mutation localized to the 3'-5' exonuclease domain. J. Virol. 67: 4323-4336.  https://doi.org/10.1128/jvi.67.7.4323-4336.1993
  49. Kern ER, Prichard MN, Quenelle DC, Keith KA, Tiwari KN, Maddry JA, et al. 2009. Activities of certain 5-substituted 4'-thiopyrimidine nucleosides against orthopoxvirus infections. Antimicrob. Agents Chemother. 53: 572-579.  https://doi.org/10.1128/AAC.01257-08
  50. Smee DF, Humphreys DE, Hurst BL, Barnard DL. 2008. Antiviral activities and phosphorylation of 5-halo-2'-deoxyuridines and N-methanocarbathymidine in cells infected with vaccinia virus. Antivir. Chem. Chemother. 19: 15-24.  https://doi.org/10.1177/095632020801900103
  51. Saccucci L, Crance JM, Colas P, Bickle M, Garin D, Iseni F. 2009. Inhibition of vaccinia virus replication by peptide aptamers. Antiviral Res. 82: 134-140.  https://doi.org/10.1016/j.antiviral.2009.02.191
  52. Flusin O, Saccucci L, Contesto-Richefeu C, Hamdi A, Bardou C, Poyot T, et al. 2012. A small molecule screen in yeast identifies inhibitors targeting protein-protein interactions within the vaccinia virus replication complex. Antiviral Res. 96: 187-195.  https://doi.org/10.1016/j.antiviral.2012.07.010
  53. Slabaugh MB, Mathews CK. 1986. Hydroxyurea-resistant vaccinia virus: overproduction of ribonucleotide reductase. J. Virol. 60: 506-514.  https://doi.org/10.1128/jvi.60.2.506-514.1986
  54. Condit RC, Easterly R, Pacha RF, Fathi Z, Meis RJ. 1991. A vaccinia virus isatin-beta-thiosemicarbazone resistance mutation maps in the viral gene encoding the 132-kDa subunit of RNA polymerase. Virology 185: 857-861.  https://doi.org/10.1016/0042-6822(91)90559-T
  55. Meis RJ, Condit RC. 1991. Genetic and molecular biological characterization of a vaccinia virus gene which renders the virus dependent on isatin-beta-thiosemicarbazone (IBT). Virology 182: 442-454.  https://doi.org/10.1016/0042-6822(91)90585-Y
  56. Prins C, Cresawn SG, Condit RC. 2004. An isatin-beta-thiosemicarbazone-resistant vaccinia virus containing a mutation in the second largest subunit of the viral RNA polymerase is defective in transcription elongation. J. Biol. Chem. 279: 44858-44871.  https://doi.org/10.1074/jbc.M408167200
  57. Weiss MM, Weiss PD, Mathisen G, Guze P. 2004. Rethinking smallpox. Clin. Infect. Dis. 39: 1668-1673.  https://doi.org/10.1086/425745
  58. Spisakova M, Cizek Z, Melkova Z. 2009. Ethacrynic and alpha-lipoic acids inhibit vaccinia virus late gene expression. Antiviral Res. 81: 156-165.  https://doi.org/10.1016/j.antiviral.2008.11.001
  59. Charity JC, Katz E, Moss B. 2007. Amino acid substitutions at multiple sites within the vaccinia virus D13 scaffold protein confer resistance to rifampicin. Virology 359: 227-232.  https://doi.org/10.1016/j.virol.2006.09.031
  60. Baldick CJ, Jr., Moss B. 1987. Resistance of vaccinia virus to rifampicin conferred by a single nucleotide substitution near the predicted NH2 terminus of a gene encoding an Mr 62,000 polypeptide. Virology 156: 138-145.  https://doi.org/10.1016/0042-6822(87)90444-2
  61. Deng L, Dai P, Ciro A, Smee DF, Djaballah H, Shuman S. 2007. Identification of novel antipoxviral agents: mitoxantrone inhibits vaccinia virus replication by blocking virion assembly. J. Virol. 81: 13392-13402.  https://doi.org/10.1128/JVI.00770-07
  62. Altmann SE, Smith AL, Dyall J, Johnson RF, Dodd LE, Jahrling PB, et al. 2012. Inhibition of cowpox virus and monkeypox virus infection by mitoxantrone. Antiviral Res. 93: 305-308.  https://doi.org/10.1016/j.antiviral.2011.12.001
  63. Ikeda S, Yazawa M, Nishimura C. 1987. Antiviral activity and inhibition of topoisomerase by ofloxacin, a new quinolone derivative. Antiviral Res. 8: 103-113.  https://doi.org/10.1016/0166-3542(87)90064-7
  64. Sekiguchi J, Stivers JT, Mildvan AS, Shuman S. 1996. Mechanism of inhibition of vaccinia DNA topoisomerase by novobiocin and coumermycin. J. Biol. Chem. 271: 2313-2322.  https://doi.org/10.1074/jbc.271.4.2313
  65. Sekiguchi J, Shuman S. 1997. Novobiocin inhibits vaccinia virus replication by blocking virus assembly. Virology 235: 129-137.  https://doi.org/10.1006/viro.1997.8684
  66. Byrd CM, Bolken TC, Mjalli AM, Arimilli MN, Andrews RC, Rothlein R, et al. 2004. New class of orthopoxvirus antiviral drugs that block viral maturation. J. Virol. 78: 12147-12156.  https://doi.org/10.1128/JVI.78.22.12147-12156.2004
  67. Dubey A, Alawi MM, Alandijany TA, Alsaady IM, Altwaim SA, Sahoo AK, et al. 2023. Exploration of microbially derived natural compounds against Monkeypox virus as viral core cysteine proteinase inhibitors. Viruses 15: 251. 
  68. Prichard MN, Kern ER. 2012. Orthopoxvirus targets for the development of new antiviral agents. Antiviral Res. 94: 111-125.  https://doi.org/10.1016/j.antiviral.2012.02.012
  69. Frenois-Veyrat G, Gallardo F, Gorge O, Marcheteau E, Ferraris O, Baidaliuk A, et al. 2022. Tecovirimat is effective against human monkeypox virus in vitro at nanomolar concentrations. Nat. Microbiol. 7: 1951-1955.  https://doi.org/10.1038/s41564-022-01269-8
  70. Payne LG, Kristenson K. 1979. Mechanism of vaccinia virus release and its specific inhibition by N1-isonicotinoyl-N2-3-methyl-4-chlorobenzoylhydrazine. J. Virol. 32: 614-622.  https://doi.org/10.1128/jvi.32.2.614-622.1979
  71. Schmutz C, Payne LG, Gubser J, Wittek R. 1991. A mutation in the gene encoding the vaccinia virus 37,000-M(r) protein confers resistance to an inhibitor of virus envelopment and release. J. Virol. 65: 3435-3442.  https://doi.org/10.1128/jvi.65.7.3435-3442.1991
  72. Reeves PM, Smith SK, Olson VA, Thorne SH, Bornmann W, Damon IK, et al. 2011. Variola and monkeypox viruses utilize conserved mechanisms of virion motility and release that depend on abl and SRC family tyrosine kinases. J. Virol. 85: 21-31.  https://doi.org/10.1128/JVI.01814-10
  73. Newsome TP, Weisswange I, Frischknecht F, Way M. 2006. Abl collaborates with Src family kinases to stimulate actin-based motility of vaccinia virus. Cell. Microbiol. 8: 233-241.  https://doi.org/10.1111/j.1462-5822.2005.00613.x
  74. Reeves PM, Bommarius B, Lebeis S, McNulty S, Christensen J, Swimm A, et al. 2005. Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases. Nat. Med. 11: 731-739.  https://doi.org/10.1038/nm1265
  75. Pollara JJ, Laster SM, Petty IT. 2010. Inhibition of poxvirus growth by Terameprocol, a methylated derivative of nordihydroguaiaretic acid. Antiviral Res. 88: 287-295.  https://doi.org/10.1016/j.antiviral.2010.09.017
  76. Bojkova D, Zoller N, Tietgen M, Steinhorst K, Bechtel M, Rothenburger T, et al. 2023. Repurposing of the antibiotic nitroxoline for the treatment of mpox. J. Med. Virol. 95: e28652. 
  77. Kindrachuk J, Arsenault R, Kusalik A, Kindrachuk KN, Trost B, Napper S, et al. 2012. Systems kinomics demonstrates Congo Basin monkeypox virus infection selectively modulates host cell signaling responses as compared to West African monkeypox virus. Mol. Cell. Proteomics 11: M111 015701. 
  78. Beerli C, Yakimovich A, Kilcher S, Reynoso GV, Flaschner G, Muller DJ, et al. 2019. Vaccinia virus hijacks EGFR signalling to enhance virus spread through rapid and directed infected cell motility. Nat. Microbiol. 4: 216-225.  https://doi.org/10.1038/s41564-018-0288-2
  79. Hammarlund E, Lewis MW, Carter SV, Amanna I, Hansen SG, Strelow LI, et al. 2005. Multiple diagnostic techniques identify previously vaccinated individuals with protective immunity against monkeypox. Nat. Med. 11: 1005-1011.  https://doi.org/10.1038/nm1273
  80. Kemper AR, Davis MM, Freed GL. 2002. Expected adverse events in a mass smallpox vaccination campaign. Eff. Clin. Pract. 5: 84-90. 
  81. Edghill-Smith Y, Golding H, Manischewitz J, King LR, Scott D, Bray M, et al. 2005. Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. Nat. Med. 11: 740-747.  https://doi.org/10.1038/nm1261
  82. Edghill-Smith Y, Bray M, Whitehouse CA, Miller D, Mucker E, Manischewitz J, et al. 2005. Smallpox vaccine does not protect macaques with AIDS from a lethal monkeypox virus challenge. J. Infect. Dis. 191: 372-381.  https://doi.org/10.1086/427265
  83. Kenner J, Cameron F, Empig C, Jobes DV, Gurwith M. 2006. LC16m8: an attenuated smallpox vaccine. Vaccine 24: 7009-7022.  https://doi.org/10.1016/j.vaccine.2006.03.087
  84. Maksyutov RA, Yakubitskiy SN, Kolosova IV, Tregubchak TV, Shvalov AN, Gavrilova EV, et al. 2022. Genome stability of the vaccine strain VACDelta6. Vavilovskii Zhurnal Genet Selektsii. 26: 394-401.  https://doi.org/10.18699/VJGB-22-48
  85. WHO. 2023. Mpox Vaccine Tracker: List of vaccine candidates in research & development. Available from https://www.who.int/publications/m/item/mpox-vaccine-tracker---list-of-vaccine-candidates-in-research---development. Accessed on April 23, 2023. 
  86. Lum FM, Torres-Ruesta A, Tay MZ, Lin RTP, Lye DC, Renia L, et al. 2022. Monkeypox: disease epidemiology, host immunity and clinical interventions. Nat. Rev. Immunol. 22: 597-613.  https://doi.org/10.1038/s41577-022-00775-4
  87. Petersen BW, Harms TJ, Reynolds MG, Harrison LH. 2016. Use of vaccinia virus smallpox vaccine in laboratory and health care personnel at risk for occupational exposure to orthopoxviruses - Recommendations of the advisory committee on immunization practices (ACIP), 2015. MMWR Morb. Mortal. Wkly. Rep. 65: 257-262.  https://doi.org/10.15585/mmwr.mm6510a2
  88. Pittman PR, Hahn M, Lee HS, Koca C, Samy N, Schmidt D, et al. 2019. Phase 3 efficacy trial of modified vaccinia ankara as a vaccine against smallpox. N. Engl. J. Med. 381: 1897-1908.  https://doi.org/10.1056/NEJMoa1817307
  89. Thornhill JP, Barkati S, Walmsley S, Rockstroh J, Antinori A, Harrison LB, et al. 2022. Monkeypox Virus Infection in Humans across 16 Countries - April-June 2022. N. Engl. J. Med. 387: 679-691.  https://doi.org/10.1056/NEJMoa2207323
  90. Rao AK, Petersen BW, Whitehill F, Razeq JH, Isaacs SN, Merchlinsky MJ, et al. 2022. Use of JYNNEOS (Smallpox and Monkeypox Vaccine, Live, Nonreplicating) for Preexposure Vaccination of Persons at Risk for Occupational Exposure to Orthopoxviruses: Recommendations of the Advisory Committee on Immunization Practices - United States, 2022. MMWR Morb. Mortal. Wkly. Rep. 71: 734-742.  https://doi.org/10.15585/mmwr.mm7122e1
  91. Sang Y, Zhang Z, Liu F, Lu H, Yu C, Sun H, et al. 2023. Monkeypox virus quadrivalent mRNA vaccine induces immune response and protects against vaccinia virus. Signal. Transduct. Target. Ther. 8: 172. 
  92. Hooper JW, Custer DM, Schmaljohn CS, Schmaljohn AL. 2000. DNA vaccination with vaccinia virus L1R and A33R genes protects mice against a lethal poxvirus challenge. Virology 266: 329-339.  https://doi.org/10.1006/viro.1999.0096
  93. Fang Z, Monteiro VS, Renauer PA, Shang X, Suzuki K, Ling X, et al. 2023. Polyvalent mRNA vaccination elicited potent immune response to monkeypox virus surface antigens. Cell. Res. 33: 407-410. 
  94. Zeng J, Li Y, Jiang L, Luo L, Wang Y, Wang H, et al. 2023. Mpox multi-antigen mRNA vaccine candidates by a simplified manufacturing strategy afford efficient protection against lethal orthopoxvirus challenge. Emerg. Microbes. Infect. 12: 2204151. 
  95. Freyn AW, Atyeo C, Earl PL, Americo JL, Chuang G-Y, Natarajan H, et al. 2022. A monkeypox mRNA-lipid nanoparticle vaccine targeting virus binding, entry, and transmission drives protection against lethal orthopoxviral challenge. bioRxiv. 2022.2012.2017.520886.  2022.2012.2017.520886
  96. Hou F, Zhang Y, Liu X, Murad Y, Xu J, Yu Z, et al. 2022. Novel mRNA vaccines encoding Monkeypox virus M1R and A35R protect mice from a lethal virus challenge. bioRxiv. 2022.2011.2019.517190.  2022.2011.2019.517190
  97. Hooper JW, Thompson E, Wilhelmsen C, Zimmerman M, Ichou MA, Steffen SE, et al. 2004. Smallpox DNA vaccine protects nonhuman primates against lethal monkeypox. J. Virol. 78: 4433-4443.  https://doi.org/10.1128/JVI.78.9.4433-4443.2004
  98. Hooper JW, Custer DM, Thompson E. 2003. Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. Virology 306: 181-195.  https://doi.org/10.1016/S0042-6822(02)00038-7
  99. Mucker EM, Golden JW, Hammerbeck CD, Kishimori JM, Royals M, Joselyn MD, et al. 2022. A nucleic acid-based orthopoxvirus vaccine targeting the vaccinia virus L1, A27, B5, and A33 proteins protects rabbits against lethal rabbitpox virus aerosol challenge. J. Virol. 96: e0150421. 
  100. Heraud JM, Edghill-Smith Y, Ayala V, Kalisz I, Parrino J, Kalyanaraman VS, et al. 2006. Subunit recombinant vaccine protects against monkeypox. J. Immunol. 177: 2552-2564.  https://doi.org/10.4049/jimmunol.177.4.2552
  101. Hirao LA, Draghia-Akli R, Prigge JT, Yang M, Satishchandran A, Wu L, et al. 2011. Multivalent smallpox DNA vaccine delivered by intradermal electroporation drives protective immunity in nonhuman primates against lethal monkeypox challenge. J. Infect. Dis. 203: 95-102.  https://doi.org/10.1093/infdis/jiq017
  102. Franceschi V, Parker S, Jacca S, Crump RW, Doronin K, Hembrador E, et al. 2015. BoHV-4-Based vector single heterologous antigen delivery protects STAT1(-/-) Mice from Monkeypoxvirus lethal challenge. PLoS Negl. Trop. Dis. 9: e0003850. 
  103. Hernaez B, Alcami A. 2018. New insights into the immunomodulatory properties of poxvirus cytokine decoy receptors at the cell surface. 7: F1000Res. 
  104. Buchman GW, Cohen ME, Xiao Y, Richardson-Harman N, Silvera P, DeTolla LJ, et al. 2010. A protein-based smallpox vaccine protects non-human primates from a lethal monkeypox virus challenge. Vaccine 28: 6627-6636.  https://doi.org/10.1016/j.vaccine.2010.07.030
  105. Xiao Y, Zeng Y, Schante C, Joshi SB, Buchman GW, Volkin DB, et al. 2020. Short-term and longer-term protective immune responses generated by subunit vaccination with smallpox A33, B5, L1 or A27 proteins adjuvanted with aluminum hydroxide and CpG in mice challenged with vaccinia virus. Vaccine 38: 6007-6018.  https://doi.org/10.1016/j.vaccine.2020.07.018
  106. Patarroyo ME, Amador R, Clavijo P, Moreno A, Guzman F, Romero P, et al. 1988. A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodium falciparum malaria. Nature 332: 158-161.  https://doi.org/10.1038/332158a0
  107. Lozano JM, Rodriguez Parra Z, Hernandez-Martinez S, Yasnot-Acosta MF, Rojas AP, Marin-Waldo LS, et al. 2021. The search of a Malaria vaccine: The time for modified immuno-potentiating probes. Vaccines (Basel) 9: 115. 
  108. Lozano JM, Muller S. 2023. Monkeypox: potential vaccine development strategies. Trends Pharmacol. Sci. 44: 15-19.  https://doi.org/10.1016/j.tips.2022.10.005
  109. Bonam SR, Partidos CD, Halmuthur SKM, Muller S. 2017. An overview of novel adjuvants designed for improving vaccine efficacy. Trends Pharmacol. Sci. 38: 771-793.  https://doi.org/10.1016/j.tips.2017.06.002
  110. Blasco R, Moss B. 1991. Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by deletion of the gene encoding the 37,000-Dalton outer envelope protein. J. Virol. 65: 5910-5920.  https://doi.org/10.1128/jvi.65.11.5910-5920.1991
  111. Fogg C, Lustig S, Whitbeck JC, Eisenberg RJ, Cohen GH, Moss B. 2004. Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. J. Virol. 78: 10230-10237.  https://doi.org/10.1128/JVI.78.19.10230-10237.2004
  112. Ando J, Ngo MC, Ando M, Leen A, Rooney CM. 2020. Identification of protective T-cell antigens for smallpox vaccines. Cytotherapy 22: 642-652. https://doi.org/10.1016/j.jcyt.2020.04.098