과제정보
이 연구는 국토교통부/국토교통과학기술진흥원의 지원을 받아 수행되었음(과제번호 RS-2020-KA156177)
참고문헌
- Abdulla, M. D., & Mosheer, K. A. M. (2022). Effect of Stirrups on the Behavior of Semi-Precast Concrete Slabs. Civil Engineering Journal 8(8), 1653-1664. https://doi.org/10.28991/CEJ-2022-08-08-09
- Hassanpour, M., Shafigh, P., & Mahmud, H. B. (2012). Lightweight Aggregate Concrete Fiber Reinforcement - A Review. Construction and Building Materials 37, 452-461. https://doi.org/10.1016/j.conbuildmat.2012.07.071
- Korea Agency for Technology and Standards. (2019). Standard Test Method for Making and Curing Concrete Specimens, KS F 2403. Korean Standards Association, 1-8. (In Korean)
- KDS 14 20 (2022). Standard for Structural Design of Concrete, Korea Construction Standards Center, Gyeonggi-do, Korea. (In Korean)
- KDS 21 50 (2022). Design Standard of Formwork and Support Bar, Korea Construction Standards Center, Gyeonggi-do, Korea. (In Korean)
- Lee, K. H., & Yang, K. H. (2021). Mechanical Properties of Lightweight Aggregate Concrete Using Expanded Bottom Ash and Dredged Soil Granules. Journal of the Architectural Institute of Korea 37(2), 189-196. (In Korean) https://doi.org/10.5659/JAIK.2021.37.2.189
- Mansour, F. R., Bakar, S. A., Ibrahim, I. S., Marsono, A. K., & Marabi, B. (2015). Flexural Performance of a Precast Concrete Slab with Steel Fiber Concrete Topping. Construction and Building Materials 75, 112-120. https://doi.org/10.1016/j.conbuildmat.2014.09.112
- Mohamed, M. S., Thamboo, J. A., & Jeyakaran, T. (2020). Experimental and Numerical Assessment of the Flexural Behaviour of Semi-Precast-Reinforced Concrete Slabs. Advances in Structural Engineering 23(9), 1865-1879. https://doi.org/10.1177/1369433220904011
- Oh, N. K., Yang, K. H., & Moon, J. H. (2022). Flexural Ductility of Lightweight Aggregate Concrete Shear Walls with Boundary Element. Journal of the Korea Concrete Institute 34(4), 345-351. (In Korean) https://doi.org/10.4334/JKCI.2022.34.4.345
- PCI (2014). Bridge Design Manual 3rd edition, Precast/Prestressed Concrete Institute, Chicago, USA.
- Shannag, M. J. (2011). Characteristics of Lightweight Concrete Containing Mineral Admixtures. Construction and Building Materials 25, 658-662. https://doi.org/10.1016/j.conbuildmat.2010.07.025
- Tang, C. W. (2017). Strength Degeneracy of LWAC and Flexural Behavior of LWAC Members After Fire. Computers and Concrete 20(2), 177-184. https://doi.org/10.12989/CAC.2017.20.2.177
- Yang, K. H. (2010). Slump and Mechanical Properties of Hybrid Steel-PVA Fiber Reinforced Concrete. Journal of the Korea Concrete Institute 22(5), 651-658. (In Korean) https://doi.org/10.4334/JKCI.2010.22.5.651
- Yang, K. H. (2022). Evaluation of Curvature and Displacement Ductility Ratios of Lightweight Aggregate Concrete Columns. Journal of the Korea Concrete Institute 34(3), 235-242. (In Korean) https://doi.org/10.4334/JKCI.2022.34.3.235
- Yang, K. H., Kim, H. Y., Lee, H. J., & Lee, Y. J. (2022). Design Models for Flexural Toughness of Lightweight Aggregate Concrete Reinforced with Micro-Steel Fibers. Magazine of the Korea Concrete Institute 34(6), 78-84. (In Korean)