DOI QR코드

DOI QR Code

Advances in Intrinsically Stretchable Light-Emitting Diodes

본연적 신축성을 갖는 발광 다이오드 개발 동향

  • Wonjin Koh (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Moon Kee Choi (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • 고원진 (울산과학기술원 신소재공학과) ;
  • 최문기 (울산과학기술원 신소재공학과)
  • Received : 2023.09.06
  • Accepted : 2023.10.11
  • Published : 2023.11.01

Abstract

Intrinsically stretchable light-emitting diodes, composed of stretchable electrodes, charge transport layers, and luminescent materials, have garnered significant interest for enhancing human well-being and advancing the field of deformable electronics. Various luminescent materials, such as perovskites and organics, have been integrated with stretchable elastomers to function as the stretchable emissive layers in these intrinsically stretchable LEDs. Stretchable conductors including Ag nanowire based percolating structures and conducting polymers have been utilized as stretchable transparent electrode. Despite this progress, their performances in terms of efficiency and stability remain challenging compared to their structurally stretchable and rigid LED counterparts. This review offers a comprehensive overview of recent advancements in intrinsically stretchable LEDs, focusing on material innovations.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (grant no.2021R1C1C1007997, 2022R1A5A6000846, 2021M3H4A3A01062963). This work was supported by the 2023 research Fund (1.230013.01) of UNIST.

References

  1. J. Yang, M. K. Choi, U. J. Yang, S. Y. Kim, Y. S. Kim, Y. S. Kim, J. H. Kim, D. H. Kim, and T. Hyeon, Nano Lett., 21, 26 (2021). doi: https://doi.org/10.1021/acs.nanolett.0c03939
  2. M. K. Choi, J. Yang, T. Hyeon, and D. H. Kim, npj Flexible Electron., 2, 10 (2018). doi: https://doi.org/10.1038/s41528-018-0023-3
  3. J. Kim, H. J. Shim, J. Yang, M. K. Choi, D. C. Kim, J. Kim, T. Hyeon, and D. H. Kim, Adv. Mater., 29, 1700217 (2017). doi: https://doi.org/10.1002/adma.201700217
  4. V. M. Arivunithi, H. Y. Park, S. S. Reddy, Y. Do, H. Park, E. S. Shin, Y. Y. Noh, M. Song, and S. H. Jin, Macromol. Res., 29, 149 (2021). doi: https://doi.org/10.1007/s13233-021-9020-9
  5. J. Yang, J. Yoo, W. S. Yu, and M. K. Choi, Macromol. Res., 29, 391 (2021). doi: https://doi.org/10.1007/s13233-021-9055-y
  6. S. Y. Kim, J. I. Kwon, H. H, Song, G. H. Lee, W. S. Yu, S. Li, M. K. Choi, and J. Yang, Appl. Surf. Sci., 610, 155579 (2023). doi: https://doi.org/10.1016/j.apsusc.2022.155579
  7. J. Y. Park, J. W. Jang, X. Shen, J. H. Jang, S. L. Kwak, H. Choi, B. R. Lee, and D. H. Hwang, Macromol. Res., 31, 721 (2023). doi: https://doi.org/10.1007/s13233-023-00151-8
  8. H. Seung, C. Choi, D. C. Kim, J. S. Kim, J. H. Kim, J. Kim, S. I. Park, J. A. Lim, J. Yang, M. K. Choi, T. Hyeon, and D. H. Kim, Sci. Adv., 8, eabq3101 (2022). doi: https://doi.org/10.1126/sciadv.abq3101
  9. C. Choi, M. K. Choi, S. Liu, M. Kim, O. K. Park, C. Im, J. Kim, X. Qin, G. J. Lee, K. W. Cho, M. Kim, E. Joh, J. Lee, D. Son, S. H. Kwon, N. L. Jeon, Y. M. Song, N. Lu, and D. H. Kim, Nat. Commun., 8, 1664 (2017). doi: https://doi.org/10.1038/s41467-017-01824-6
  10. S. Jo, S. Cho, U. J. Yang, G. S. Hwang, S. Baek, S. H. Kim, S. H. Heo, J. Y. Kim, M. K. Choi, and J. S. Son, Adv. Mater., 33, 2100066 (2021). doi: https://doi.org/10.1002/adma.202100066
  11. C. S. Park, M. S. Kim, H. H. Kim, S. H. Sunwoo, D. J. Jung, M. K. Choi, and D. H. Kim, Appl. Phys. Rev., 9, 021312 (2022). doi: https://doi.org/10.1063/5.0093261
  12. S. Li, J. H. Jang, W. Chung, H. Seung, S. I. Park, H. Ma, W. J. Pyo, C. Choi, D. S. Chung, D. H. Kim, M. K. Choi, and J. Yang, ACS Nano (2023). doi: https://doi.org/10.1021/acsnano.3c05178
  13. M. Lee, H. Seung, J. I. Kwon, M. K. Choi, D. H. Kim, and C. Choi, ACS Omega, 8, 5209 (2023). doi: https://doi.org/10.1021/acsomega.3c00440
  14. J. Yoo, S. Ha, G. H. Lee, Y. Kim, and M. K. Choi, Adv. Funct. Mater., 2302473 (2023). doi: https://doi.org/10.1002/adfm.202302473
  15. J. Yoo, S. Li, D. H. Kim, J. Yang, and M. K. Choi, Nanoscale Horiz., 7, 801 (2022). doi: https://doi.org/10.1039/D2NH00158F
  16. J. I. Kwon, G. Park, G. H. Lee, J. H. Jang, N. J. Sung, S. Y. Kim, J. Yoo, K. Lee, H. Ma, M. Karl, T. J. Shin, M. H. Song, J. Yang, and M. K. Choi, Sci. Adv., 8, eadd0697 (2022). doi: https://doi.org/10.1126/sciadv.add0697
  17. S.G.R. Bade, X. Shan, P. T. Hoang, J. Li, T. Geske, L. Cai, Q. Pei, C. Wang, and Z. Yu, Adv. Mater., 29, 1607053 (2022). doi: https://doi.org/10.1002/adma.201607053
  18. D. H. Jiang, Y. C. Liao, C. J. Cho, L. Veeramuthu, F. C. Liang, T. C. Wang, C. C. Chueh, T. Satoh, S. H. Tung, and C. C. Kuo, Appl. Mater. Interfaces, 12, 14408 (2020). doi: https://doi.org/10.1021/acsami.9b23291
  19. J. H. Kim and J. W. Park, Sci. Adv., 7, eabd9715 (2021). doi: https://doi.org/10.1126/sciadv.abd9715
  20. H. Zhou, S. J. Han, A. K. Harit, D. H. Kim, D. Y. Kim, Y. S. Choi, H. Kwon, K. N. Kim, G. T. Go, H. J. Yun, B. H. Hong, M. C. Suh, S. Y. Ryu, H. Y. Woo, and T. W. Lee, Adv. Mater., 34, 2203040 (2022). doi: https://doi.org/10.1002/adma.202203040
  21. Z. Zhang, W. Wang, Y. Jiang, Y. X. Wang, Y. Wu, J. C. Lai, S. Niu, C. Xu, C. C. Shih, C. Wang, H. Yan, L. Galuska, N. Prine, H. C. Wu, D. Zhong, G. Chen, N. Matsuhisa, Y. Zheng, Z. Yu, Y. Wang, R. Dauskardt, X. Gu, J.B.H. Tok, and Z. Bao, Nature, 603, 624 (2022). doi: https://doi.org/10.1038/s41586-022-04400-1
  22. W. Liu, C. Zhang, R. Alessandri, B. T. Diroll, Y. Li, H. Liang, X. Fan, K. Wang, H. Cho, Y. Liu, Y. Dai, Q. Su, N. Li, S. Li, S. Wai, Q. Li, S. Shao, L. Wang, J. Xu, X. Zhang, D. V. Talapin, J. J. de Pablo, and S. Wang, Nat. Mater., 22, 737 (2023). doi: https://doi.org/10.1038/s41563-023-01529-w