DOI QR코드

DOI QR Code

Influence of Ca-Na-Cl physicochemical solution properties on the adsorption of Se(-II) onto granite and MX-80 bentonite

  • Received : 2022.06.06
  • Accepted : 2023.06.27
  • Published : 2023.10.25

Abstract

The adsorption behaviour of Se(-II) onto granite and MX-80 bentonite in Ca-Na-Cl solutions has been studied utilizing adsorption experiments and surface complexation modelling. Adsorption kinetic experiments allude to steady-state adsorption periods after 7 days for granite and 14 days for MX-80 bentonite. Batch adsorption experiments were carried out to determine the influence that the physicochemical solution properties would have on Se(-II) adsorption behaviour. Adsorption of Se(-II) onto granite and MX-80 bentonite follows the trend of anionic adsorption, with a decrease in Rd values as the solution pH increased. There is also an ionic strength influence on the adsorption of Se(-II) onto granite with a decrease in the Rd value as the ionic strength increased. This effect is not found when observing Se(-II) adsorption onto MX-80 bentonite. Final experiments with a representative groundwater, determined that the adsorption of Se(-II) onto granite and MX-80 bentonite returned Rd values of (1.80 ± 0.10) m3·kg-1 and (0.47 ± 0.38) m3·kg-1, respectively. In support of the experiments, a surface complexation modelling approach has been employed to simulate the adsorption of Se(-II) onto granite and MX-80 bentonite, where it was determined that two different surface complexes, ≡S_Se- and ≡SOH2+_H2 were capable of simulating Se(-II) adsorption behaviour.

Keywords

Acknowledgement

This work was funded by the Nuclear Waste Management Organization.

References

  1. P. Gierszewski, A. Parmenter, Confidence in Safety - South Bruce Site, Nuclear Waste Management Organization, 2022. NWMO-TR-2022-15. 
  2. P. Gierszewski, A. Parmenter, Confidence in Safety - Revell Site, Nuclear Waste Management Organization, 2022. NWMO-TR-2022-14. 
  3. Postclosure Safety Assessment of a Used Fuel Repository in Crystalline Rock, Nuclear Waste Management Organization, 2017. NWMO-TR-2017-02. 
  4. N. Naserifard, A. Lee, K. Birch, A. Chiu, X. Zhang, Deep Geological Repository Conceptual Design Report Crystalline/Sedimentary Rock, Nuclear Waste Management Organization, 2021. APM-REP-00440-0211-R000. 
  5. G. Jorg, R. Buhnemann, S. Hollas, N. Kivel, K. Kossert, S. Van Winckel, G. Lierse v Gostomski, Preparation of radiochemically pure 79Se and highly precise determination of its half-life, Appl. Radiat. Isot. 63 (2010) 2339-2351.  https://doi.org/10.1016/j.apradiso.2010.05.006
  6. N. Jordan, C. Franzen, J. Lutzenkirchen, H. Foerstendorf, D. Hering, S. Weiss, K. Heim, V. Brendler, Adsorption of selenium(VI) onto nano transition alumina, Environ. Sci. Nanotech. (2018). 
  7. N. Jordan, A. Ritter, H. Foerstendorf, A.C. Scheinost, S. Weiss, K. Heim, J. Grenzer, A. Mucklich, H. Reuther, Adsorption mechanism of selenium(VI) onto maghemite, Geochem. Cosmochim. Acta 103 (2013) 63-75.  https://doi.org/10.1016/j.gca.2012.09.048
  8. X. Li, E. Puhakka, J. Ikonen, M. Soderland, A. Lindberg, S. Holgersson, A. Martin, M. Siitari-Kauppi, Sorption of Se species on mineral surfaces, part 1: batch sorption and multi-site modelling, Appl. Geochem. 95 (2018) 147-157.  https://doi.org/10.1016/j.apgeochem.2018.05.024
  9. W.A. Hardy, G. Silvey, C.H. Townes, B.F. Burke, M.W.P. Strandberg, G.W. Parker, V.W. Cohen, The nuclear moments of 79Se, Phys. Rev. 6 (1953) 1532-1537.  https://doi.org/10.1103/PhysRev.92.1532
  10. K. Videnska, S. Palagyi, K. Stamberg, H. Vodickova, V. Havlova, Effect of grain size on the sorption and desorption of SeO42- and SeO32- in columns of crushed granite and fracture infill from granitic water under dynamic conditions, J. Radioanal. Nucl. Chem. 298 (2013) 547-554.  https://doi.org/10.1007/s10967-013-2429-7
  11. B. Bar-Yosef, D. Meek, Selenium sorption by kaolinite and montmorillonite, Soil Sci. 144 (1987) 11-19.  https://doi.org/10.1097/00010694-198707000-00003
  12. M. Gupta, S. Gupta, An overview of selenium uptake, metabolism, and toxicity in plants, Front. Plant Sci. 7 (2017) 2074. 
  13. Y. Zhang, J. N. Moore, Selenium fractionation and speciation in a wetland system, Environ. Sci. Technol. 30 (20XX) 2613-2619. 
  14. H. Koch-Steindl, G. Prohl, Consideration on the behaviour of long-lived radionuclides in the soil, Radiat. Environ. Biophys. 40 (2001) 93-104.  https://doi.org/10.1007/s004110100098
  15. C. Medri, G. Bird, Non-Human Biota Dose Assessment Equations and Data, Nuclear Waste Management Organization, 2015. NWMO-TR-2014-02 R001. 
  16. M. Greger, Uptake of Nuclides on Plants, Svensk Karnbranslehantering AB (SKB), 20014, TR-04-14. 
  17. M. Ho, The Long-Term Biogeochemistry of 79Se, 99Tc, and 90Sr in Complex Environmental Systems, PhD Thesis, Department of Chemistry - Radiochemistry, University of Helsinki, 2022. 
  18. J. J. J. Racette, S. Nagasaki, Pursuing Long-Term Nuclear Waste Safety in Canada for Seven Generations and beyond: A Radio-Ethnobotany Case Study in: 41st Annual Conference of the Canadian Nuclear Society and 46th Annual CNS/CNA Student Conference June 5 - 8 2022. 
  19. S. Das, J.M. Hendry, J. Essilfie-Dughan, Adsorption of selenate onto ferrihydrite, geothite, and lepidocrocite under neutral pH conditions, Appl. Geochem. 28 (2013) 185-193.  https://doi.org/10.1016/j.apgeochem.2012.10.026
  20. S. Goldberg, Macroscopic experimental and modelling evaluation of selenite and selenate adsorption mechanisms on gibbsite, Soil Sci. Soc. Am. J. 78 (2013) 473-479.  https://doi.org/10.2136/sssaj2013.06.0249
  21. N. Mayordomo, H. Foerstendorf, J. Lutzenkirchen, K. Heim, S. Weiss, U. Alonso, T. Missana, K. Schmeide, N. Jordan, Selenium(IV) sorption onto γ-Al2O3: a consistent description of the surface speciation by spectroscopy and thermodynamic modelling, Environ. Sci. Technol. 52 (2018) 581-588.  https://doi.org/10.1021/acs.est.7b04546
  22. H.K. Hami, R.F. Abbas, E.M. Eltayef, N.I. Mahdi, Applications of aluminum oxide and nano aluminum oxide as adsorbents: review, Samarra J. Pure Appl Sci. 2 (2020) 19-32.  https://doi.org/10.54153/sjpas.2020.v2i2.109
  23. U.K. Saha, C. Liu, L.M. Kozak, P.M. Huang, Kinetics of selenite adsorption on hydroxyaluminum and hydroxyaluminosilicate-montmorillonite complexes, Soil Sci. Soc. Am. J. 68 (2004) 1197-1209.  https://doi.org/10.2136/sssaj2004.1197
  24. D. Peak, Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface, J. Colloid Interface Sci. 303 (2006) 337-345.  https://doi.org/10.1016/j.jcis.2006.08.014
  25. W.-H. Kuan, S.-L. Lo, M.K. Wang, C.-F. Lin, Removal of Se(IV) and Se(VI) from water by aluminum oxide coated sand, Wat. Res. 32 (1998) 915-923.  https://doi.org/10.1016/S0043-1354(97)00228-5
  26. Y.L. Jan, T.H. Wang, M.H. Li, S.C. Tsai, Y.Y. Wei, C.N. Hsu, S.P. Teng, Evaluating adsorption ability of granite to radioselenium by chemical sequential extraction, J. Radioanal. Nucl. Chem. 273 (2007) 299-306.  https://doi.org/10.1007/s10967-007-6856-1
  27. K. Videnska, V. Havlova, Retention of anionic species on granite: influence of granite composition - 12129 in: WM2012 conference, pheonix, Arizona, USA, in: WM2012 Conference, February 26 - March 1, 2012. February 26-March 1, 2012, Pheonix, Arizona, USA. 
  28. F. Seby, M. Potin-Gautier, E. Giffaut, G. Borge, O.F. X Donard, A critical review of thermodynamic data for selenium species at 25℃, Chem. Geol. 171 (2001) 173-194.  https://doi.org/10.1016/S0009-2541(00)00246-1
  29. M. Fujita, M. Ike, R. Hashimoto, T. Nakagawa, K. Yamaguchi, S.O. Soda, Characterizing kinetics of transport and transformation in water-sediment microcosm free from selenium contamination using a simple mathematical model, Chemosphere 58 (2005) 705-714.  https://doi.org/10.1016/j.chemosphere.2004.09.042
  30. F. Chen, P.C. Burns, R.C. Ewing, 79Se: geochemical and crystallo-chemical retardation mechanisms, J. Nucl. Matls. 275 (1999) 81-94.  https://doi.org/10.1016/S0022-3115(99)00105-1
  31. I. Zafeiriou, D. Gasparatos, I. Massas, Adsorption/Desorption patterns of selenium for acid and alkaline soils of xerothermic environments, Environments 7 (2020). 
  32. J.S. Yamani, A.W. Lounsbury, J.B. Zimmerman, Adsorption of selenite and selenate by nanocrystalline aluminum oxide, neat and impregnated chitosan beads, J. of Water Research 50 (2014) 373-381.  https://doi.org/10.1016/j.watres.2013.10.054
  33. Y. Legoux, G. Blain, R. Guillaumont, G. Ouzounian, L. Brillard, M. Hussonnois, Kd measurements of activation, fission, and heavy elements in water/solid phase systems, Radiochim. Acta 58/59 (1992) 211-218.  https://doi.org/10.1524/ract.1992.5859.2.211
  34. M.-H. Baik, S.-Y. Lee, J. Jeong, Sorption and reduction of selenite on chlorite surfaces in the presence of Fe(II) ions, J. Environ. Radioact. 126 (2013) 209-215.  https://doi.org/10.1016/j.jenvrad.2013.08.005
  35. T. Missana, U. Alonso, M. Garcia-Gutierrez, Experimental Study and modelling of selenite sorption onto illite and smectite clays, J. Colloid Interface Sci. 334 (2009) 132-138.  https://doi.org/10.1016/j.jcis.2009.02.059
  36. K. Piekkari, K. Ohenoja, V. Isteri, P. Tanskanen, M. Illikainen, Immobilization of heavy metals, selenate, and sulphate from a hazardous industrial side stream by using calcium sulfoaluminate-belite cement, J. Clean. Prod. 258 (2020), 120560. 
  37. C.E. Cowan, J.M. Zachara, C.T. Resch, Solution ion effects on the surface exchange of selenite on calcite, Geochem. Cosmochim. Acta 54 (1990) 2223-2234.  https://doi.org/10.1016/0016-7037(90)90047-O
  38. S. Goldberg, R.A. Glaubig, Anion sorption on a calcerous, montmorillonite soil-selenium, Soil Sci. Soc. Am. J. 52 (1988) 954-988.  https://doi.org/10.2136/sssaj1988.03615995005200040010x
  39. K.V. Ticknor, T.T. Vandergraaf, J. McMurray, L. Biosvenue, D.L. Wilkin, Parametric Studies of Factors Affecting Se and Sn Sorption, Atomic Energy of Canada Ltd., 1996. AECL TR-723, COG-95-554. 
  40. Y. Iida, T. Yamaguchi, T. Tanaka, Sorption Behaviour of hydroselenide (HSe-) onto iron containing minerals, J. Nucl. Sci. Technol. 51 (2014) 305-322.  https://doi.org/10.1080/00223131.2014.864457
  41. Y. Iida, T. Tanaka, T. Yamaguchi, S. Nakayama, Sorption behaviour of selenium(-II) on rocks under reducing conditions, J. Nucl. Sci. Technol. 48 (2011) 279-291.  https://doi.org/10.1080/18811248.2011.9711702
  42. Y. Sugiura, Tomura, T. Ishidera, R. Doi, P. Clarence, M. Francisco, H. Shiwaku, T. Kobayashi, D. Matsumura, Y. Takahashi, Y. Tachi, Sorption behaviour of selenide on montmorillonite, J. Radioanal. Nucl. Chem. 324 (2020) 615-622, 43, 59, 66-72.  https://doi.org/10.1007/s10967-020-07092-x
  43. A. Walker, J. Racette, T. Saito, T.T. Yang, S. Nagasaki, Sorption of Se(-II) on illite, MX-80 bentonite, shale, and limestone in Na-Ca-Cl Solutions, Nucl. Eng. Technol. 54 (2022) 1616-1622.  https://doi.org/10.1016/j.net.2021.10.039
  44. F.P. Bertetti, Determination of Sorption Properties for Sedimentary Rocks under Saline, Reducing, Conditions - Key Radionuclides, Nuclear Waste Management Organization, 2016. NWMO-TR-2016-08. 
  45. A. Olin, B. Nolang, E.G. Osadchii, L.-O. Ohman, E. Rosen, Chemical Thermodynamics of Selenium, Nuclear Energy Agency, 2004. 
  46. S. Nagasaki, T. Saito, T.T. Yang, Sorption Behaviour of Np(V) on illite, shale, and MX-80 in high ionic strength solutions, J. Radioanal. Nucl. Chem. 308 (2016) 143-153.  https://doi.org/10.1007/s10967-015-4332-x
  47. M. Altmaier, V. Neck, T. Fanghanel, Solubility of Zr(IV), Th(IV), and Pu(IV) hydrous oxides in CaCl2 solutions and the formation of ternary Ca-M(IV)-OH complexes, Radiochim. Acta 96 (2008) 541-550.  https://doi.org/10.1524/ract.2008.1535
  48. M. Altmaier, V. Metz, V. Neck, R. Muller, T. Fanghanel, Solid-Liquid equilibria of Mg(OH)2(cr) and Mg2(OH)3Cl.4H2O(cr) in the system Mg-Na-H-OH-Cl-H2O at 25℃, Geochem. Cosmochim. Acta 67 (2003) 3595-3601.  https://doi.org/10.1016/S0016-7037(03)00165-0
  49. J. Zhao, H. Matsune, S. Takanaka, N. Kishida, Reduction of selenate with hydrazine monohydrate over Pt crystals in aqueous solution, Chem. Eng. J. 308 (2017) 963-973.  https://doi.org/10.1016/j.cej.2016.09.143
  50. J.P. Chen, L.L. Lim, Key factors in chemical reduction by hydrazine for recovery of precious metals, Chemosphere 49 (2002) 363-370.  https://doi.org/10.1016/S0045-6535(02)00305-3
  51. Y. Iida, T. Yamaguchi, S. Nakayama, T. Nakajima, Y. Sakamoto, The solubility of metallic selenium under anoxic conditions, Mater. Res. Soc. Symp. Proc. 663 (2001). 
  52. Y. Iida, T. Tanaka, T. Yamaguchi, S. Nakayama, Solubility of selenium at high ionic strength under anoxic conditions, J. Nucl. Sci. Technol. 47 (2010) 431-438.  https://doi.org/10.1080/18811248.2010.9711633
  53. Y. Iida, T. Yamaguchi, T. Tanaka, A. Kitamura, S. Nakayama, Determination of the Solubility Limiting Solid of Selenium in the Presence of Iron under Anoxic Conditions, Japanese Atomic Energy Research Institute, 2010. 
  54. Y. Iida, T. Tanaka, T. Yamaguchi, S. Nakayama, Solubility of selenium at high ionic strength under anoxic conditions, J. Nucl. Sci. Technol. 47 (2010) 431-438.  https://doi.org/10.1080/18811248.2010.9711633
  55. T.T. Yang, Personal Correspondence, Nuclear Waste Management Organization, 2018. 
  56. T.T. Yang, Personal Correspondence, Nuclear Waste Management Organization, 2023. 
  57. M.H. Bradbury, B. Baeyens, Physico-Chemical Characterisation Data and Sorption Measurements of Cs, Ni, Eu, Th, U, Cl, I, and Se on MX-80 Bentonite, Paul Schrerrer Institut, 2011. PSI Bericht Nr. 11-05. 
  58. D. Dixon, A. Mam, S. Rimal, J. Stone, G. Siemens, Bentonite Seal Properties in Saline Water, Nuclear Waste Management Organization, 2018. NWMO-TR-2018-20. 
  59. S. Nagasaki, Sorption Properties of Np on Shale, Illite, and Bentonite under Saline, Oxidizing, and Reducing Conditions, Nuclear Waste Management Organization, 2018. NWMO-TR-2018-02. 
  60. J. Goguen, A. Walker, J. Racette, J. Riddoch, S. Nagasaki, Sorption of Pd on illite, MX-80 bentonite, shale in Na-Ca-Cl solutions, Nucl. Eng. Technol. 53 (2021) 894-900.  https://doi.org/10.1016/j.net.2020.09.001
  61. D.L. Parkhurst, C.A.J. Appelo, Description of input and examples for PHREEQC version 3 - a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geological Survey Techniques and Methods (2013). 
  62. R. Doi, A. Kitamura, M. Yui, JAEA Thermodynamic Database for Performance Assessment of Geological Disposal of High-Level and TRU Wasters: Selection of Thermodynamic Data of Selenium, Japanese Atomic Energy Agency, 2009. JAEA-Review 2009-051. 
  63. S. Licht, F. Forouzan, Speciation analysis of aqueous polyselenide solutions, J. Electrochem. Soc. 142 (1995) 1546-1551.  https://doi.org/10.1149/1.2048610
  64. L.E. Lyons, T.L. Young, Alkaline selenide, polyselenide electrolytes: concentrations, absorption spectra, and formal potentials, Aust. J. Chem. 39 (1986) 511-527.  https://doi.org/10.1071/CH9860511
  65. E. Yalcintas, X. Gaona, M. Altmaier, K. Dardenna, R. Polly, H. Geckeis, Thermodynamic description of Tc(IV) solubility and hydrolysis in dilute to concentrated NaCl, MgCl2 and CaCl2 solutions, Dalton Trans. 45 (2016) 8916-8936.  https://doi.org/10.1039/C6DT00973E
  66. M.H. Bradbury, B. Baeyens, A mechanistic description of Ni and Zn sorption on Na-montmorillonite Part I: titration and Sorption Measurements, J. Contam. Hydrol. 27 (1997) 199-222.  https://doi.org/10.1016/S0169-7722(97)00008-9
  67. M.H. Bradbury, B. Baeyens, A mechanistic description of Ni and Zn sorption on Na-montmorillonite Part II: modelling, J. Contam. Hydrol. 27 (1997) 223-248.  https://doi.org/10.1016/S0169-7722(97)00007-7
  68. M.H. Bradbury, B. Baeyens, A Quantitative Mechanistic Description of Ni, Xn, and Ca Sorption on Na-Montmorillonite, Paul Schreer Institute, 1995. PSI Bericht Nr. 95-12. 
  69. M.H. Bradbury, B. Baeyens, Sorption modelling on illite Part 1: titration measurements and sorption of Ni(II), Co(II), Eu(III), and Sn(IV), Geochem. Cosmochim. Acta 73 (2009) 990-1003.  https://doi.org/10.1016/j.gca.2008.11.017
  70. M.H. Bradbury, B. Baeyens, Sorption modelling on Illite Part 2: actinide sorption and linear free-energy relationships, Geochem. Cosmochim. Acta 73 (2009) 1004-1013.  https://doi.org/10.1016/j.gca.2008.11.016
  71. B. Grambow, M. Fattahi, G. Montavon, C. Moisan, E. Giffaut, Sorption of Cs, Ni, Pb, Eu(III), Am(III), Cm, Ac(III), Tc(IV), Th, Zr, and U(IV) on MX-80 bentonite: an experimental approach to assess model uncertainty, Radiochim. Acta 94 (2006) 627-636.  https://doi.org/10.1524/ract.2006.94.9-11.627
  72. X. Li, A. Puhakka, L. Liu, W. Zhang, J. Ikonen, A. Lindberg, M. Slitari-Kauppi, Multi-site surface complexation modelling of Se(IV) sorption on biotite, Chem. Geol. 533 (2020), 119433. 
  73. C. Tournassat, A. Neaman, F. Villieras, D. Bosbach, L. Charlet, Nanomorphology of montmorillonite particles: estimation of the clay edge sorption site density by low-pressure gas adsorption and AFM observations, Am. Mineral. 88 (2003) 1989-1995.  https://doi.org/10.2138/am-2003-11-1243
  74. C.H. Wu, S.L. Lo, C.F. Lin, C.Y. Kuo, Modelling competitive adsorption of molybdate, sulfate, and selenate on γ-Al2O3 by the triple layer model, J. Colloid Interface Sci. 233 (2001) 259-264.  https://doi.org/10.1006/jcis.2000.7223
  75. Y. Iida, T. Yamaguchi, T. Tanaka, K. Hemmi, Sorption Behaviour of thorium onto granite and its constituent minerals, J. Nucl. Sci. Technol. 53 (2016) 1573-1584.  https://doi.org/10.1080/00223131.2016.1138901
  76. H. Wanner, Y. Albinsson, O. Karnland, E. Wieland, P. Wersin, L. Charlet, The acid/base chemistry of montmorillonite, Radiochim. Acta 66/67 (1994) 157-162.  https://doi.org/10.1524/ract.1994.6667.special-issue.157
  77. S.V. Mattigod, A.S. Gibali, A.L. Page, Effect of ionic strength and ion pair formation on the adsorption of nickel onto kaolinite, Clay Clay Miner. 27 (1976) 411-416.  https://doi.org/10.1346/CCMN.1979.0270603
  78. K.V. Ticknor, J. McMurray, A study of selenium and tin sorption on granite and geothite, Radiochim. Acta 73 (1996) 149-156.  https://doi.org/10.1524/ract.1996.73.3.149
  79. B. Baeyens, T. Thoenen, B.H. Bradbury, M. Marques-Fernandes, Sorption data bases for argillaceous rocks and bentonite for the provisional safety analyses for SGT-E2, Nat. Coop. for the Dispos. Of Radioactive Waste (2014). NAGRA TR 12-04. 
  80. M. Soderlund, M. Lusa, S. Virtanen, I. Valimaa, M. Hakanen, J. Lehto, Distribution Coefficients of Caesium, Chlorine, Iodine, Niobium, Selenium, and Technetium on Olkiluoto Soils, Posiva, 2014. Working Report 2013-068. 
  81. P. Vilks, T. Yang, Sorption of Selected Radionuclides on Sedimentary Rocks in Saline Conditions - Updated Sorption Values, Nuclear Waste Management Organization, 2018 NWMO-TR-2018-03. 
  82. C.R. Twidale, J.A. Bourne, J.R. Vidal Romani, Origin of miniature mogotes in granite, king rocks, southern yilgarn block, western Australia, Cuaternario Geomorfol. 13 (1999) 33-34. 
  83. C. Tournassat, J.-M. Greneche, D. Tisserand, L. Charlet, The titration of clay minerals 1. Discontinuous backtitration combined with CEC measurements, J. Colloid Interface Sci. 273 (2004) 224-233. https://doi.org/10.1016/j.jcis.2003.11.021