DOI QR코드

DOI QR Code

Characterization of eutectic reaction of Cr and Cr/CrN coated zircaloy accident tolerant fuel cladding

  • Dongju Kim (Department of Nuclear Engineering, Seoul National University) ;
  • Martin Sevecek (Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague) ;
  • Youho Lee (Department of Nuclear Engineering, Seoul National University)
  • Received : 2022.12.23
  • Accepted : 2023.06.08
  • Published : 2023.10.25

Abstract

Eutectic reactions of five kinds of Cr-coated Zr alloy cladding with different base materials (Zr-Nb-Sn alloy or Zr-Nb alloy), different coating thicknesses (6~22.5 mm), and different coating materials (Cr single layer or Cr/CrN bilayer) were studied using Differential Scanning Calorimetry (DSC). The DSC experiments demonstrated that the onset temperatures of the Cr single layer coated specimens were almost identical to ~1308 ℃, regardless of base materials or coating thicknesses. This study demonstrated that the Cr/CrN bilayer coated Zr-Nb-Sn alloy has a slightly (~10 ℃) higher eutectic onset temperature compared to the single Cr-coated specimen. The eutectic region characterized by post-eutectic microstructure proportionally increases with coating thickness. The post-eutectic characterization with different holding times at high temperature (1310-1330 ℃) reveals that progression of Zr-Cr eutectic requires time, and it dramatically changed with exposure time and temperature. The practical value of the time gain in non-instantaneous eutectic formation in terms of safety margin, however, seems to be limited.

Keywords

Acknowledgement

This work was conducted in the frame of IAEA's Coordinated Research Project on Testing and Simulation for Advanced Technology and Accident Tolerant Fuels (ATF-TS T12032). This work was supported by the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea [2101051 (50%) and 2106021 (50%)]. This work was supported by the Institute of Engineering Research at Seoul National University.

References

  1. S. Bang, Y. Lee, The statistical ductility of embrittled Zircaloy-4 and its regulatory implications, J. Nucl. Mater. 554 (2021), 153085.
  2. H.M. Chung, Fuel behavior under loss-of-coolant accident situations, Nucl. Eng. Technol. 37 (4) (2005) 327-362.
  3. K. Keum, Y. Lee, Effect of cooling rate on the residual ductility of Post-LOCA Zircaloy-4 cladding, J. Nucl. Mater. 541 (2020), 152405.
  4. D. Kim, H. Jang, D. Ko, Y. Lee, Study of high burnup effect on steam oxidation of Zircaloy and its regulatory implications via the developement of a pre-transient oxide model of TRANOX, J. Nucl. Mater. 567 (2022), 153801.
  5. D. Kim, H. Yook, K. Keum, Y. Lee, TRANOX: model for non-isothermal steam oxidation of zircaloy cladding, J. Nucl. Mater. 556 (2021), 153153.
  6. R.E. Pawel, J.V. Cathcart, R.A. McKee, The kinetics of oxidation of zircaloy-4 in steam at high temperatures, J. Electrochem. Soc. 126 (7) (1979) 1105-1111. https://doi.org/10.1149/1.2129227
  7. J.-C. Brachet, T. Guilbert, M. Le Saux, J. Rousselot, G. Nony, C. Toffolon-Masclet, A. Michau, F. Schuster, H. Palancher, J. Bischoff, J. Augereau, E. Pouillier, Behavior of Cr-Coated M5 Claddings during and after High Temperature Steam Oxidation from 800 ℃ up to 1500 ℃, Loss-Of-Coolant Accident & Design Extension Conditions), 2018.
  8. J.-C. Brachet, E. Rouesne, J. Ribis, T. Guilbert, S. Urvoy, G. Nony, C. Toffolon-Masclet, M. Le Saux, N. Chaabane, H. Palancher, A. David, J. Bischoff, J. Augereau, E. Pouillier, High temperature steam oxidation of chromium-coated zirconium-based alloys: kinetics and process, Corrosion Sci. 167 (2020), 108537.
  9. J.C. Brachet, M. Dumerval, V. Lezaud-Chailioux, M.L. Saux, E. Rouesne, D. Hamon, S. Urvoy, T. Guilbert, Q. Houmaire, C. Cobac, G. Nony, J.L. Rousselot, F.C. Lomello, F. Schuster, H. Palancher, J. Bischoff, E. Pouillier, Behavior of Chromium Coated M5TM Claddings under Loca Conditions, WRFPM2017 Water Reactor Fuel Performance Meeting, Jeju-do, South Korea, 2017.
  10. J.C. Brachet, S. Urvoy, E. Rouesne, G. Nony, M. Dumerval, M.L. Saux, F. Ott, A. Michau, F. Schuster, F. Maury, DLI-MOCVD CrxCy coating to prevent Zr-based cladding from inner oxidation and secondary hydriding upon LOCA conditions, J. Nucl. Mater. 550 (2021), 152953.
  11. M. Steinbruck, U. Stegmaier, M. Grosse, L. Czerniak, E. Lahoda, R. Daum, K. Yueh, High-temperature oxidation and quenching of chromium-coated zirconium alloy ATF cladding tubes with and w/o pre-damage, J. Nucl. Mater. 559 (2022), 153470.
  12. J. Yang, M. Steinbruck, C. Tang, M. Grosse, J. Liu, J. Zhang, D. Yun, S. Wang, Review on chromium coated zirconium alloy accident tolerant fuel cladding, J. Alloys Compd. 895 (2022), 162450.
  13. H. Yook, K. Shirvan, B. Phillips, Y. Lee, Post-LOCA ductility of Cr-coated cladding and its embrittlement limit, J. Nucl. Mater. 558 (2022), 153354.
  14. F. Fejt, M. Sevecek, J. Frybort, O. Novak, Study on neutronics of VVER-1200 with accident tolerant fuel cladding, Ann. Nucl. Energy 124 (2019) 579-591. https://doi.org/10.1016/j.anucene.2018.10.040
  15. R.V. Umretiya, B. Elward, D. Lee, M. Anderson, R.B. Rebak, J.V. Rojas, Mechanical and chemical properties of PVD and cold spray Cr-coatings on Zircaloy-4, J. Nucl. Mater. 541 (2020), 152420.
  16. N. Chaari, J. Bischoff, K. Buchanan, C. Delafoy, P. Barberis, J. Augereau, K. Nimishakavi, The behavior of Cr-coated zirconium alloy cladding tubes at high temperatures, in: A.T. Motta, S.K. Yagnik (Eds.), Zirconium in the Nuclear Industry: 19th International Symposium, ASTM International, West Conshohocken, PA, 2021, pp. 189-210.
  17. X. Han, C. Chen, Y. Tan, W. Feng, S. Peng, H. Zhang, A systematic study of the oxidation behavior of Cr coatings on Zry4 substrates in high temperature steam environment, Corrosion Sci. 174 (2020), 108826.
  18. J. Jiang, M. Du, Z. Pan, M. Yuan, X. Ma, B. Wang, Effects of oxidation and interdiffusion on the fracture mechanisms of Cr-coated Zry-4 alloys: an in situ three-point bending study, Mater. Des. 212 (2021), 110168.
  19. J.-S. Jiang, D.-Q. Wang, M.-Y. Du, X.-F. Ma, C.-X. Wang, X.-J. He, Interdiffusion behavior between Cr and Zr and its effect on the microcracking behavior in the Cr-coated Zr-4 alloy, Nucl. Sci. Tech. 32 (12) (2021) 134.
  20. Y. Jianqiao, U. Stegmaier, C. Tang, M. Steinbruck, M. Grosse, S. Wang, H. Seifert, High temperature Cr-Zr interaction of two types of Cr-coated Zr alloys in inert gas environment, J. Nucl. Mater. (2021), 152806.
  21. J. Liu, Z. Cui, Z. Hao, D. Ma, J. Lu, Y. Cui, C. Li, W. Liu, S. Xie, P. Hu, P. Huang, G. Bai, D. Yun, Steam oxidation of Cr-coated Sn-containing Zircaloy solid rod at 1000 ℃, Corrosion Sci. 190 (2021), 109682.
  22. H.-B. Ma, J. Yan, Y.-H. Zhao, T. Liu, Q.-S. Ren, Y.-H. Liao, J.-D. Zuo, G. Liu, M.-Y. Yao, Oxidation behavior of Cr-coated zirconium alloy cladding in high-temperature steam above 1200 ℃, Npj Mater. Degrad. 5 (1) (2021) 7.
  23. H. Yeom, B. Maier, G. Johnson, T. Dabney, M. Lenling, K. Sridharan, High temperature oxidation and microstructural evolution of cold spray chromium coatings on Zircaloy-4 in steam environments, J. Nucl. Mater. 526 (2019), 151737.
  24. H.-J. Lu, W.-B. Wang, N. Zou, J.-Y. Shen, X.-G. Lu, Y.-L. He, Thermodynamic modeling of Cr-Nb and Zr-Cr with extension to the ternary Zr-Nb-Cr system, Calphad 50 (2015) 134-143. https://doi.org/10.1016/j.calphad.2015.06.002
  25. H. Yook, Y. Lee, Post-LOCA ductility assessment of Zr-Nb Alloy from 1100 ℃ to 1300 ℃ to explore variable peak cladding temperature and equivalent cladding reacted safety criteria, J. Nucl. Mater. 567 (2022), 153829.
  26. K.P. Gupta, The Cr-Ni-Zr (Chromium-Nickel-Zirconium) system, J. Phase Equilibria Diffus. 31 (2) (2010) 191-193. https://doi.org/10.1007/s11669-010-9666-z
  27. J. Bischoff, C. Delafoy, C. Vauglin, P. Barberis, C. Roubeyrie, D. Perche, D. Duthoo, F. Schuster, J.-C. Brachet, E.W. Schweitzer, K. Nimishakavi, AREVA NP's enhanced accident-tolerant fuel developments: focus on Cr-coated M5 cladding, Nucl. Eng. Technol. 50 (2) (2018) 223-228. https://doi.org/10.1016/j.net.2017.12.004
  28. C. Tang, M. Steinbrueck, M. Grosse, Oxidation Performance and Failure Behaviour of Monolithic and Coated ATF Claddings under Severe Accident Conditions, INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2020.
  29. J. Krejci, M. Sevecek, J. Kabatov a, F. Manoch, J. Koci, P. Bublikova, P. Halodova, H. Namburi, Experimental Behavior of Chromium-Based Coatings, 2018.
  30. G. Bourdon, M. Sevecek, J. Krejci, L. Cvrcek, High-temperature steam and air oxidation of chromium-coated optimized zirlo, in: Acta Polytechnica CTU Proceedings 24, 2019, pp. 1-8.
  31. H.-G. Kim, J.-Y. Park, Y.-I. Jung, D.J. Park, Y.-H. Koo, Irradiation Test Results of HANA Cladding in HALDEN Test Reactor after 67 GWD, MTU, 2012.
  32. M. Glazoff, Physical and Mechanical Metallurgy of Zirconium Alloys for Nuclear Applications: a Multi-Scale Computational Study, 2014.
  33. H.-j. Lu, W.-B. Wang, N. Zou, J.-Y. Shen, X.-G. Lu, Y.-L. He, Thermodynamic modeling of Cr-Nb and Zr-Cr with extension to the ternary Zr-Nb-Cr system, Calphad 50 (2015).
  34. J.W. Arblaster, Thermodynamic properties of zirconium, Calphad 43 (2013) 32-39. https://doi.org/10.1016/j.calphad.2013.07.015
  35. E.B. Kashkarov, D.V. Sidelev, N.S. Pushilina, J. Yang, C. Tang, M. Steinbrueck, Influence of coating parameters on oxidation behavior of Cr-coated zirconium alloy for accident tolerant fuel claddings, Corrosion Sci. 203 (2022), 110359.
  36. E.B. Kashkarov, D.V. Sidelev, M.S. Syrtanov, C. Tang, M. Steinbruck, Oxidation kinetics of Cr-coated zirconium alloy: effect of coating thickness and microstructure, Corrosion Sci. 175 (2020), 108883.
  37. J. Jiang, D. Zhan, J. Lv, X. Ma, X. He, D. Wang, Y. Hu, H. Zhai, J. Tu, W. Zhang, B. Wang, Comparative study on the tensile cracking behavior of CrN and Cr coatings for accident-tolerant fuel claddings, Surf. Coating. Technol. 409 (2021), 126812.